Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Front Cardiovasc Med ; 11: 1338156, 2024.
Article in English | MEDLINE | ID: mdl-38742174

ABSTRACT

Objective: While hypertension is a well-recognized risk factor for non-alcoholic fatty liver disease (NAFLD), the specific roles of various common blood pressure measurements [diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), mean arterial pressure (MAP)] in detecting NAFLD and evaluating the associated risk in adults remain unclear. Methods: A retrospective analysis was conducted on 14,251 adult participants undergoing health screenings in the NAfld in the Gifu Area, Longitudinal Analysis project (NAGALA). Following the Z-transformation of the independent variables, we evaluated the relationships between the four blood pressure indices and NAFLD through multivariable logistic regression models. This analysis documented the odds ratio (OR) and 95% confidence interval (CI) for each standard deviation (SD) increase. Additionally, the effectiveness of these indices in identifying NAFLD was comparatively analyzed using receiver operating characteristic (ROC) curves. Results: After adequately adjusting for confounders, all blood pressure indices except PP showed a positive correlation with NAFLD. For each SD increment, MAP had the strongest association with NAFLD compared to SBP and DBP. This finding was confirmed in populations without exercise habits, under 60 years of age, with normal blood pressure, and in non-obese groups. Furthermore, based on ROC analysis, MAP was found to have the highest accuracy in identifying NAFLD compared to the other three blood pressure indices. Conclusion: Among the four blood pressure indices evaluated, MAP demonstrates the greatest efficacy in identifying NAFLD and assessing its associated risk. These findings underscore the potential of MAP as the most promising blood pressure index for screening NAFLD.

2.
Anal Chem ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764163

ABSTRACT

Gold nanorods (AuNRs) have been considered highly compelling materials for early cancer diagnosis and have aroused a burgeoning fascination among the biomedical sectors. By leveraging the versatile tunable optical properties of AuNRs, herein, we have developed a novel tumor-targeted dual-modal nanoprobe (FFA) that exhibits excellent bioluminescence and photoacoustic imaging performance for early tumor diagnosis. FFA has been synthesized by anchoring the recombinant bioluminescent firefly luciferase protein (Fluc) on the folate-conjugated AuNRs via the PEG linker. TEM images and UV-vis studies confirm the nanorod morphology and successful conjugation of the biomolecules to AuNRs. The nanoprobe FFA relies on the ability of the folate module to target the folate receptor-positive tumor cells actively, and simultaneously, the Fluc module facilitates excellent bioluminescent properties in physiological conditions. The success of chemical engineering in the present study enables stronger bioluminescent signals in the folate receptor-positive cells (Skov3, Hela, and MCF-7) than in folate receptor-negative cells (A549, 293T, MCF-10A, and HepG2). Additionally, the AuNRs induced strong photoacoustic conversion performance, enhancing the resolution of tumor imaging. No apparent toxicity was detected at the cellular and mouse tissue levels, manifesting the biocompatibility nature of the nanoprobe. Prompted by the positive merits of FFA, the in vivo animal studies were performed, and a notable enhancement was observed in the bioluminescent/photoacoustic intensity of the nanoprobe in the tumor region compared to that in the folate-blocking region. Therefore, this synergistic dual-modal bioluminescent and photoacoustic imaging platform holds great potential as a tumor-targeted contrast agent for early tumor diagnosis with high-performance imaging information.

3.
ACS Omega ; 9(15): 17458-17466, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645310

ABSTRACT

The flow field design of the proton exchange membrane fuel cell (PEMFC) had a great impact on the performance and lifespan of the cell. To improve the uniformity of the substance component inside the PEMFC, referring to the serpentine flow field, a kind of compensating flow field is designed and investigated. Under the same conditions, the homogeneity of the two flow field structures is compared, and the influence of the homogeneity of two flow field distributions on the performance of the PEMFC is further analyzed. The polarization curve, maximum pressure difference at the inlet and outlet of the flow channel, and thermal stress generated by temperature gradients are used as performance indicators for evaluating the performance of the cell. The results show that after compensation, the distribution uniformity of each component in the flow field is improved, and the power density, water management, and thermal management capabilities are better than those in the traditional flow field design. Furthermore, the thermal performance of the single-layer cell and five-layer stack was compared. The results show that the more fuel cell layers, the greater the temperature difference within the cell, which will result in greater thermal stress. In the compensation flow field, the thermal stress of a single-layer unit is 14% lower than that of a serpentine flow field, and the thermal stress of a five-layer stack is 20% lower.

4.
Am J Physiol Endocrinol Metab ; 326(6): E767-E775, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38506752

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increasing prevalence worldwide. NAFLD could develop from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), NASH-related fibrosis, cirrhosis, and even hepatocellular carcinoma. However, the mechanism of NAFLD development has not yet been fully defined. Recently, emerging evidence shows that the dysregulated iron metabolism marked by elevated serum ferritin, and ferroptosis are involved in the NAFLD. Understanding iron metabolism and ferroptosis can shed light on the mechanisms of NAFLD development. Here, we summarized studies on iron metabolism and the ferroptosis process involved in NAFLD development to highlight potential medications and therapies for treating NAFLD.


Subject(s)
Ferroptosis , Iron , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/metabolism , Ferroptosis/physiology , Humans , Iron/metabolism , Animals , Liver/metabolism , Liver/pathology , Ferritins/metabolism
5.
Lab Chip ; 24(7): 1987-1995, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38372397

ABSTRACT

Uracil-DNA glycosylase (UDG) is a base excision repair (BER) enzyme, which catalyzes the hydrolysis of uracil bases in DNA chains that contain uracil and N-glycosidic bonds of the sugar phosphate backbone. The expression of UDG enzyme is associated with a variety of genetic diseases including cancers. Hence, the identification of UDG activity in cellular processes holds immense importance for clinical investigation and diagnosis. In this study, we employed Cas12a protein and enzyme-assisted cycle amplification technology with a test strip to establish a precise platform for the detection of UDG enzyme. The designed platform enabled amplifying and releasing the target probe by reacting with the UDG enzyme. The amplified target probe can subsequently fuse with crRNA and Cas12a protein, stimulating the activation of the Cas12a protein to cleave the signal probe, ultimately generating a fluorescent signal. This technique showed the ability for evaluating UDG enzyme activity in different cell lysates. In addition, we have designed a detection probe to convert the fluorescence signal into test strip bands that can then be observed with the naked eye. Hence, our tool presented potential in both biomedical research and clinical diagnosis related to DNA repair enzymes.


Subject(s)
CRISPR-Cas Systems , Uracil-DNA Glycosidase , Uracil-DNA Glycosidase/chemistry , Uracil-DNA Glycosidase/metabolism , Limit of Detection , DNA/chemistry , Uracil/chemistry
6.
J Vis Exp ; (203)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38314815

ABSTRACT

Hepatectomy is widely regarded as the primary treatment for hepatic malignancies; yet, postoperative liver failure remains a major cause of perioperative mortality, severely impacting patient outcomes. In a robust hepatic environment, the future liver remnant (FLR) must exceed 25%, and in cases of cirrhosis, this requirement increases to over 40%. The inadequacy of FLR is currently a major obstacle in the progression of hepatic surgery. Traditional methods to enhance FLR hypertrophy mainly focus on portal vein embolization (PVE), but its effectiveness is considerably limited. In recent years, there have been numerous reports on a novel biphasic hepatectomy method involving hepatic partitioning and portal vein ligation, known as associating liver partition and portal vein ligation for staged hepatectomy (ALPPS). ALPPS surpasses PVE in efficiently and considerably inducing FLR hypertrophy. However, the detailed mechanisms driving ALPPS-facilitated hepatic regeneration are not fully understood. Thus, replicating ALPPS in animal models is crucial to thoroughly investigate the molecular mechanisms of hepatic regeneration, offering valuable theoretical and practical insights.


Subject(s)
Hepatectomy , Liver Neoplasms , Animals , Mice , Humans , Hepatectomy/methods , Portal Vein/surgery , Microscopy , Liver Regeneration , Treatment Outcome , Liver/pathology , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Ligation , Disease Models, Animal , Hypertrophy/pathology , Hypertrophy/surgery
7.
Adv Mater ; 36(15): e2309487, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38174652

ABSTRACT

Electronic band structure engineering of metal-halide perovskites (MHP) lies at the core of fundamental materials research and photovoltaic applications. However, reconfiguring the band structures in MHP for optimized electronic properties remains challenging. This article reports a generic strategy for constructing near-edge states to improve carrier properties, leading to enhanced device performances. The near-edge states are designed around the valence band edge using theoretical prediction and constructed through tailored material engineering. These states are experimentally revealed with activation energies of around 23 milli-electron volts by temperature-dependent time-resolved spectroscopy. Such small activation energies enable prolonged carrier lifetime with efficient carrier transition dynamics and low non-radiative recombination losses, as corroborated by the millisecond lifetimes of microwave conductivity. By constructing near-edge states in positive-intrinsic-negative inverted cells, a champion efficiency of 25.4% (25.0% certified) for a 0.07-cm2 cell and 23.6% (22.7% certified) for a 1-cm2 cell is achieved. The most stable encapsulated cell retains 90% of its initial efficiency after 1100 h of maximum power point tracking under one sun illumination (100 mW cm-2) at 65 °C in ambient air.

8.
Light Sci Appl ; 12(1): 295, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38057305

ABSTRACT

Various exciton species in transition metal dichalcogenides (TMDs), such as neutral excitons, trions (charged excitons), dark excitons, and biexcitons, have been individually discovered with distinct light-matter interactions. In terms of valley-spin locked band structures and electron-hole configurations, these exciton species demonstrate flexible control of emission light with degrees of freedom (DOFs) such as intensity, polarization, frequency, and dynamics. However, it remains elusive to fully manipulate different exciton species on demand for practical photonic applications. Here, we investigate the contrasting light-matter interactions to control multiple DOFs of emission light in a hybrid monolayer WSe2-Ag nanowire (NW) structure by taking advantage of various exciton species. These excitons, including trions, dark excitons, and biexcitons, are found to couple independently with propagating surface plasmon polaritons (SPPs) of Ag NW in quite different ways, thanks to the orientations of transition dipoles. Consistent with the simulations, the dark excitons and dark trions show extremely high coupling efficiency with SPPs, while the trions demonstrate directional chiral-coupling features. This study presents a crucial step towards the ultimate goal of exploiting the comprehensive spectrum of TMD excitons for optical information processing and quantum optics.

9.
Front Endocrinol (Lausanne) ; 14: 1281524, 2023.
Article in English | MEDLINE | ID: mdl-38089634

ABSTRACT

Objective: The newly proposed Metabolic Visceral Fat Score (METS-VF) is considered a more effective measure for visceral adipose tissue (VAT) than other obesity indicators. This study aimed to reveal the association between METS-VF and non-alcoholic fatty liver disease (NAFLD), and its variations across age groups within both sexes. Methods: Data from 14,251 medical examiners in the NAGALA project were employed in this study. 3D fitted surface plots were constructed based on multivariate logistic regression models to visualize the isolated and combined effects of aging and METS-VF on NAFLD. Receiver operating characteristic curve (ROC) analysis was conducted to compare the diagnostic performance of METS-VF with other VAT surrogate markers in predicting NAFLD. Results: The results of multivariate logistic regression analysis showed that each unit increase in METS-VF was independently associated with a 333% and 312% increase in the odds of NAFLD in males and females, respectively. Additionally, the 3D fitted surface plot showed that age significantly influenced the association between METS-VF and the odds of NAFLD in both sexes, as follows: (i) In males, when METS-VF was less than 6.2, the METS-VF-related odds of NAFLD increased gradually with age in the 20-45 age group, reached a plateau in the 45-65 age group, and then decreased in the group above 65 years old; however, when male METS-VF exceeded 6.2, aging and METS-VF combined to further increase the odds of NAFLD in all age groups, particularly in the 45-65 age group. (ii) In females, aging seemed to reduce METS-VF-related odds of NAFLD in the 18-40 age group, but significantly increased it in the 40-60 age group, particularly for those with higher METS-VF levels. Further ROC analysis revealed that compared to other VAT surrogate markers, METS-VF showed the highest diagnostic accuracy for NAFLD in females, especially in those under 45 years of age [area under the curve (AUC) = 0.9256]. Conclusions: This study firstly revealed a significant positive correlation between METS-VF and the odds of NAFLD, with METS-VF surpassing other VAT surrogate markers in NAFLD diagnosis. Moreover, age significantly influenced the METS-VF-related odds of NAFLD and METS-VF's diagnostic efficacy for NAFLD in both sexes.


Subject(s)
Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Female , Male , Humans , Child , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Metabolic Syndrome/complications , Intra-Abdominal Fat , Biomarkers , Seizures , Age Factors
10.
ACS Nano ; 17(16): 15474-15481, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37540772

ABSTRACT

Quantum liquids, systems exhibiting effects of quantum mechanics and quantum statistics at macroscopic levels, represent one of the most exciting research frontiers of modern physical science and engineering. Notable examples include Bose-Einstein condensation (BEC), superconductivity, quantum entanglement, and a quantum liquid. However, quantum liquids are usually only stable at cryogenic temperatures, significantly limiting fundamental studies and device development. Here we demonstrate the formation of stable electron-hole liquid (EHL) with the quantum statistic nature at temperatures as high as 700 K in monolayer MoS2 and elucidate that the high-temperature EHL exists as droplets in sizes of around 100-160 nm. We also develop a thermodynamic model of high-temperature EHL and, based on the model, compile an exciton phase diagram, revealing that the ionized photocarrier drives the gas-liquid transition, which is subsequently validated with experimental results. The high-temperature EHL provides a model system to enable opportunities for studies in the pursuit of other high-temperature quantum liquids. The results can also allow for the development of quantum liquid devices with practical applications in quantum information processing, optoelectronics, and optical interconnections.

11.
J Immunol ; 211(5): 816-835, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37486225

ABSTRACT

Programmed death-ligand 1/programmed cell death 1 (PD-L1/PD-1) is one of the most important immune checkpoints in humans and other mammalian species. However, the occurrence of the PD-L1/PD-1 checkpoint in evolutionarily ancient vertebrates remains elusive because of the absence of a PD-1 homolog before its appearance in tetrapods. In this article, we identified, to our knowledge, a novel PD-L1/B and T lymphocyte attenuator (BTLA) checkpoint in zebrafish by using an Edwardsiella tarda-induced bacterial infection model. Results showed that zebrafish (Danio rerio) PD-L1 (DrPD-L1) and BTLA (DrBTLA) were differentially upregulated on MHC class II+ macrophages (Mϕs) and CD8+ T cells in response to E. tarda infection. DrPD-L1 has a strong ability to interact with DrBTLA, as shown by the high affinity (KD = 5.68 nM) between DrPD-L1/DrBTLA proteins. Functionally, the breakdown of DrPD-L1/DrBTLA interaction significantly increased the cytotoxicity of CD8+BTLA+ T cells to E. tarda-infected PD-L1+ Mϕ cells and reduced the immune escape of E. tarda from the target Mϕ cells, thereby enhancing the antibacterial immunity of zebrafish against E. tarda infection. Similarly, the engagement of DrPD-L1 by soluble DrBTLA protein diminished the tolerization of CD8+ T cells to E. tarda infection. By contrast, DrBTLA engagement by a soluble DrPD-L1 protein drives aberrant CD8+ T cell responses. These results were finally corroborated in a DrPD-L1-deficient (PD-L1-/-) zebrafish model. This study highlighted a primordial PD-L1/BTLA coinhibitory axis that regulates CD8+ T cell activation in teleost fish and may act as an alternative to the PD-L1/PD-1 axis in mammals. It also revealed a previously unrecognized strategy for E. tarda immune evasion by inducing CD8+ T cell tolerance to target Mϕ cells through eliciting the PD-L1/BTLA checkpoint pathway.


Subject(s)
B7-H1 Antigen , Zebrafish , Humans , Animals , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes , Mammals , Receptors, Immunologic/metabolism
12.
An Acad Bras Cienc ; 95(suppl 1): e20220750, 2023.
Article in English | MEDLINE | ID: mdl-37466537

ABSTRACT

Sleep deprivation (SD) can lead to cognitive impairment caused by neuroinflammation. MiR-181c-5p/HMGB1 axis plays a part in anti-inflammation effects. However, the mechanism that miR-181c-5p facilitates learning and memory in SD mice remains unclear. So we investigated the role of miR-181c-5p in learning and memory impairment induced by SD. We overexpressed miR-181c-5p in the mice hippocampus by injecting lentivirus vector-miR-181c-5p (LV-miR-181c-5p) particles. Mice were divided into four groups: control (Ctrl), SD, SD + miR-181c-5p and SD + vector. We found that mice in the third group showed ameliorated learning and memory compared with the fourth group. The content of ionized calcium binding adaptor molecule 1 (IBA-1) in the third group was decreased compared with the fourth group. Moreover, the expression levels of HMGB1, TLR4 and p-NF-κB in the hippocampus of overexpressed miR-181c-5p mice were reduced. In total, miR-181c-5p ameliorated learning and memory in SD mice via the HMGB1/TLR4/NF-κB pathway.


Subject(s)
HMGB1 Protein , MicroRNAs , Mice , Animals , NF-kappa B/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Sleep
13.
FASEB J ; 37(6): e22951, 2023 06.
Article in English | MEDLINE | ID: mdl-37227178

ABSTRACT

Teleost fish are indispensable model organisms for comparative immunology research that should lead to an improved understanding of the general principles of vertebrate immune system design. Although numerous studies on fish immunology have been conducted, knowledge about the cell types that orchestrate piscine immune systems remains limited. Here, we generated a comprehensive atlas of immune cell types in zebrafish spleen on the basis of single-cell transcriptome profiling. We identified 11 major categories from splenic leukocyte preparations, including neutrophils, natural killer cells, macrophages/myeloid cells, T cells, B cells, hematopoietic stem and progenitor cells, mast cells, remnants of endothelial cells, erythroid cells, erythroid progenitors, and a new type of serpin-secreting cells. Notably, we derived 54 potential subsets from these 11 categories. These subsets showed differential responses to spring viremia of carp virus (SVCV) infection, implying that they have diverse roles in antiviral immunity. Additionally, we landscaped the populations with the induced expression of interferons and other virus-responsive genes. We found that trained immunity can be effectively induced in the neutrophil and M1-macrophage subsets by vaccinating zebrafish with inactivated SVCV. Our findings illustrated the complexity and heterogeneity of the fish immune system, which will help establish a new paradigm for the improved understanding of fish immunology.


Subject(s)
Rhabdoviridae Infections , Zebrafish , Animals , Zebrafish/genetics , Spleen , Endothelial Cells , Gene Expression Profiling
14.
Front Cell Infect Microbiol ; 13: 1149679, 2023.
Article in English | MEDLINE | ID: mdl-37143744

ABSTRACT

The tuberculosis (TB) burden remains a significant global public health concern, especially in less developed countries. While pulmonary tuberculosis (PTB) is the most common form of the disease, extrapulmonary tuberculosis, particularly intestinal TB (ITB), which is mostly secondary to PTB, is also a significant issue. With the development of sequencing technologies, recent studies have investigated the potential role of the gut microbiome in TB development. In this review, we summarized studies investigating the gut microbiome in both PTB and ITB patients (secondary to PTB) compared with healthy controls. Both PTB and ITB patients show reduced gut microbiome diversity characterized by reduced Firmicutes and elevated opportunistic pathogens colonization; Bacteroides and Prevotella were reported with opposite alteration in PTB and ITB patients. The alteration reported in TB patients may lead to a disequilibrium in metabolites such as short-chain fatty acid (SCFA) production, which may recast the lung microbiome and immunity via the "gut-lung axis". These findings may also shed light on the colonization of Mycobacterium tuberculosis in the gastrointestinal tract and the development of ITB in PTB patients. The findings highlight the crucial role of the gut microbiome in TB, particularly in ITB development, and suggest that probiotics and postbiotics might be useful supplements in shaping a balanced gut microbiome during TB treatment.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Mycobacterium tuberculosis , Tuberculosis, Lymph Node , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Lymph Node/complications
15.
J Am Chem Soc ; 145(18): 10314-10321, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37126434

ABSTRACT

Samarium diiodide (SmI2) mediated reductive coupling reactions are powerful methods for the construction of carbon-carbon bond in organic synthesis. Despite the extensive development in recent decades, successful examples of the corresponding asymmetric reactions remained scarce, probably due to the involvement of highly reactive radical intermediates. In this Article, we report an enantioselective dearomatization of indoles via SmI2-mediated intermolecular reductive coupling with ketones. The utilization of samarium reductant supported by chiral tridentate aminodiol ligands allows the facile synthesis of indoline molecules bearing two contiguous stereogenic centers in high yields (up to 99%) and stereoselectivity (up to 99:1 er and >20:1 dr). Combined experimental and computational investigations suggested that parallel single-electron transfer to each substrate from the chiral samarium reductant allows the radical-radical recombination in an enantioselective manner, which is a unique mechanistic scenario in SmI2-mediated reductive coupling reactions.

16.
PLoS Pathog ; 19(4): e1011222, 2023 04.
Article in English | MEDLINE | ID: mdl-37014912

ABSTRACT

Endogenous retroviruses (ERVs) are the relics of ancient retroviruses occupying a substantial fraction of vertebrate genomes. However, knowledge about the functional association of ERVs with cellular activities remains limited. Recently, we have identified approximately 3,315 ERVs from zebrafish at genome-wide level, among which 421 ERVs were actively expressed in response to the infection of Spring viraemia of carp virus (SVCV). These findings demonstrated the previously unrecognized activity of ERVs in zebrafish immunity, thereby making zebrafish an attractive model organism for deciphering the interplay among ERVs, exogenous invading viruses, and host immunity. In the present study, we investigated the functional role of an envelope protein (Env38) derived from an ERV-E5.1.38-DanRer element in zebrafish adaptive immunity against SVCV in view of its strong responsiveness to SVCV infection. This Env38 is a glycosylated membrane protein mainly distributed on MHC-II+ antigen-presenting cells (APCs). By performing blockade and knockdown/knockout assays, we found that the deficiency of Env38 markedly impaired the activation of SVCV-induced CD4+ T cells and thereby led to the inhibition of IgM+/IgZ+ B cell proliferation, IgM/IgZ Ab production, and zebrafish defense against SVCV challenge. Mechanistically, Env38 activates CD4+ T cells by promoting the formation of pMHC-TCR-CD4 complex via cross-linking MHC-II and CD4 molecules between APCs and CD4+ T cells, wherein the surface subunit (SU) of Env38 associates with the second immunoglobin domain of CD4 (CD4-D2) and the first α1 domain of MHC-IIα (MHC-IIα1). Notably, the expression and functionality of Env38 was strongly induced by zebrafish IFNφ1, indicating that env38 acts as an IFN-stimulating gene (ISG) regulated by IFN signaling. To the best of our knowledge, this study is the first to identify the involvement of an Env protein in host immune defense against an exogenous invading virus by promoting the initial activation of adaptive humoral immunity. It improved the current understanding of the cooperation between ERVs and host adaptive immunity.


Subject(s)
Endogenous Retroviruses , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Zebrafish , Immunity, Humoral , Immunoglobulin M , Fish Diseases/genetics
17.
Innovation (Camb) ; 4(2): 100389, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36895759

ABSTRACT

Developing versatile and robust surfaces that mimic the skins of living beings to regulate air/liquid/solid matter is critical for many bioinspired applications. Despite notable achievements, such as in the case of developing robust superhydrophobic surfaces, it remains elusive to realize simultaneously topology-specific superwettability and multipronged durability owing to their inherent tradeoff and the lack of a scalable fabrication method. Here, we present a largely unexplored strategy of preparing an all-perfluoropolymer (Teflon), nonlinear stability-assisted monolithic surface for efficient regulating matters. The key to achieving topology-specific superwettability and multilevel durability is the geometric-material mechanics design coupling superwettability stability and mechanical strength. The versatility of the surface is evidenced by its manufacturing feasibility, multiple-use modes (coating, membrane, and adhesive tape), long-term air trapping in 9-m-deep water, low-fouling droplet transportation, and self-cleaning of nanodirt. We also demonstrate its multilevel durability, including strong substrate adhesion, mechanical robustness, and chemical stability, all of which are needed for real-world applications.

18.
J Transl Med ; 21(1): 192, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36915168

ABSTRACT

BACKGROUND: Body mass index (BMI) and lipid parameters are the most commonly used anthropometric parameters and biomarkers for assessing nonalcoholic fatty liver disease (NAFLD) risk. This study aimed to assess and quantify the mediating role of traditional and non-traditional lipid parameters on the association between BMI and NAFLD. METHOD: Using data from 14,251 subjects from the NAGALA (NAfld in the Gifu Area, Longitudinal Analysis) study, mediation analyses were performed to explore the roles of traditional [total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C)] and non-traditional [non-HDL-C, remnant cholesterol (RC), TC/HDL-C ratio, LDL-C/HDL-C ratio, TG/HDL-C ratio, non-HDL-C/HDL-C ratio, and RC/HDL-C ratio] lipid parameters in the association of BMI with NAFLD and quantify the mediation effect of these lipid parameters on the association of BMI with NAFLD using the percentage of mediation. RESULT: After fully adjusting for confounders, multivariate regression analysis showed that both BMI and lipid parameters were associated with NAFLD (All P-value < 0.001). Mediation analysis showed that both traditional and non-traditional lipid parameters mediated the association between BMI and NAFLD (All P-value of proportion mediate < 0.001), among which non-traditional lipid parameters such as RC, RC/HDL-C ratio, non-HDL-C/HDL-C ratio, and TC/HDL-C ratio accounted for a relatively large proportion, 11.4%, 10.8%, 10.2%, and 10.2%, respectively. Further stratified analysis according to sex, age, and BMI showed that this mediation effect only existed in normal-weight (18.5 kg/m2 ≤ BMI < 25 kg/m2) people and young and middle-aged (30-59 years old) people; moreover, the mediation effects of all lipid parameters except TC accounted for a higher proportion in women than in men. CONCLUSION: The new findings of this study showed that all lipid parameters were involved in and mediated the risk of BMI-related NAFLD, and the contribution of non-traditional lipid parameters to the mediation effect of this association was higher than that of traditional lipid parameters, especially RC, RC/HDL-C ratio, non-HDL-C/HDL-C ratio, and TC/HDL-C ratio. Based on these results, we suggest that we should focus on monitoring non-traditional lipid parameters, especially RC and RC/HDL-C ratio, when BMI intervention is needed in the process of preventing or treating NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Middle Aged , Humans , Female , Adult , Non-alcoholic Fatty Liver Disease/epidemiology , Body Mass Index , Mediation Analysis , Cholesterol, LDL , Lipid Metabolism , Cholesterol , Triglycerides , Cholesterol, HDL , Lipoproteins
19.
Anal Chem ; 95(10): 4786-4794, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36854667

ABSTRACT

Precise characterization of miRNA expression patterns is critical to exploit the complexity of miRNA regulation in biology. Herein, we developed a Pumilio/FBF (PUF) protein-based engineering luciferase reporter system, PUF/miR, to quantitatively and non-invasively sense miRNA activity in living cells and animal models. We verified the feasibility of this reporter by monitoring the expression of several types of miRNAs (miRNA-9, 124a, 1, and 133a) in neural and muscle differentiated cells as well as subcutaneous or tibial anterior muscles in mice. The quantitative RT-PCR also validated the reliability and quantitative consistency of bioluminescence imaging in detecting miRNA expression. We further effectively employed this reporter system to visualize the expression of miRNA-1 and miRNA-133a in mouse models of skeletal muscle injury. As a non-invasive and convenient innovative approach, our results have realized the positive bioluminescence imaging of endogenous miRNAs in vitro and in vivo using the PUF/miR system. We believe that this approach would provide a potential means for noninvasive monitoring of disease-related miRNAs and could facilitate a deeper understanding of miRNA biology.


Subject(s)
MicroRNAs , Mice , Animals , Reproducibility of Results , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Differentiation , Luciferases/genetics , Diagnostic Imaging
20.
J Affect Disord ; 324: 496-501, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36621673

ABSTRACT

OBJECTIVE: Despite previous studies illustrate that chronic diseases are risk factors for older adults' psychological health, little is known about its mediating mechanism. This study aims to examine the mediating effect of cognitive impairment. Also, a particular emphasis is placed on whether the Hukou system in China contributes to the adverse effect of chronic diseases on depressive symptoms. METHODS: Using the 2014, 2016 and 2018 rounds of the China Longitudinal Aging Social Survey (CLASS), this study estimates fixed-effect panel models for the effect of chronic diseases on depressive symptoms and the mediating effect of cognitive impairment. Meanwhile, the interaction effect of chronic diseases and hukou status on depressive symptoms is also examined. RESULTS: The significant relationship between chronic diseases and depressive symptoms is supported in Chinese older adults and this association is found to be mediated by cognitive impairment. Moreover, no urban-rural disparities exist in the effect of chronic diseases on depressive symptoms. LIMITATION: All of the measures in this study are relied on self-report, which may result in reporting biases. CONCLUSION: This study contributes to our understanding of the relationship between chronic diseases and depressive symptoms and extends the previous literature by considering the Hukou status, a highly distinctive Chinese variable. Practical implications for policy development and intervention design are also provided.


Subject(s)
Cognitive Dysfunction , Depression , Humans , Aged , Depression/epidemiology , Depression/etiology , Longitudinal Studies , East Asian People , Cognitive Dysfunction/epidemiology , China/epidemiology , Chronic Disease
SELECTION OF CITATIONS
SEARCH DETAIL
...