Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Onco Targets Ther ; 14: 2673-2688, 2021.
Article in English | MEDLINE | ID: mdl-33888992

ABSTRACT

PURPOSE: Circulating tumor cells (CTCs) are considered to be a key factor involved in tumor metastasis. However, the isolation and culture of CTCs in vitro remains challenging, and their clinical application for predicting prognosis and survival is still limited. The development of accurate evaluating system for CTCs will benefit for clinical assessment of HCC. METHODS: Density gradient centrifugation and magnetic separation based on CD45 antibody were used to isolate CTCs. 3D culture was used to maintain and amplify CTCs and HCC cells. Cellular immunofluorescence was used to identify CTCs and spheroids. The cutoff value of CTC spheroid was calculated using X-tile software. The relationship between clinicopathological variables and CTC spheroids in HCC patients is analyzed. In vivo models were used to evaluate tumor growth and metastasis of CTC spheroids. RESULTS: Patient-derived CTCs/HCC cells were isolated and expanded to form spheroids using 3D culture. CTC spheroids could be used to predict short-term recurrence of CTCs compared with conventional CTC enumeration. Different cell lines exhibited different formation rates and grew to different sizes. Identification of CTC spheroids revealed that EpCAM and ß-catenin were expressed in spheroids derived from HCC cells and in the HCC/CTCs. EpCAM-positive HCC cells exhibited improved spheroid formation in 3D culture and were more tumorigenic and likely to metastasize to the lung in vivo. Abnormal activation of the Wnt/ß-catenin signaling pathway was observed in EpCAM positive cells. CONCLUSION: CTC spheroids could predict prognosis of HCC more precisely compared with conventional CTC enumeration. EpCAM may participate in the formation and survival of CTC spheroids which dependent on Wnt/ß-catenin signaling pathway.

2.
Cell Death Dis ; 11(5): 328, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32382008

ABSTRACT

Ubiquitin-specific peptidase 10 (USP10) stabilizes both tumor suppressors and oncogenes in a context-dependent manner. However, the nature of USP10's role in non-small cell lung cancer (NSCLC) remains unclear. By analyzing The Cancer Genome Atlas (TCGA) database, we have shown that high levels of USP10 are associated with poor overall survival in NSCLC with mutant p53, but not with wild-type p53. Consistently, genetic depletion or pharmacological inhibition of USP10 dramatically reduces the growth of lung cancer xenografts lacking wild-type p53 and sensitizes them to cisplatin. Mechanistically, USP10 interacts with, deubiquitinates, and stabilizes oncogenic protein histone deacetylase 6 (HDAC6). Furthermore, reintroducing either USP10 or HDAC6 into a USP10-knockdown NSCLC H1299 cell line with null-p53 renders cisplatin resistance. This result suggests the existence of a "USP10-HDAC6-cisplatin resistance" axis. Clinically, we have found a positive correlation between USP10 and HDAC6 expression in a cohort of NSCLC patient samples. Moreover, we have shown that high levels of USP10 mRNA correlate with poor overall survival in a cohort of advanced NSCLC patients who received platinum-based chemotherapy. Overall, our studies suggest that USP10 could be a potential biomarker for predicting patient response to platinum, and that targeting USP10 could sensitize lung cancer patients lacking wild-type p53 to platinum-based therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/therapeutic use , Drug Resistance, Neoplasm , Histone Deacetylase 6/metabolism , Lung Neoplasms/drug therapy , Tumor Suppressor Protein p53/deficiency , Ubiquitin Thiolesterase/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice, SCID , Mutation/genetics , Ovarian Neoplasms/pathology , Platinum/pharmacology , Protein Binding/drug effects , Protein Stability/drug effects , Signal Transduction/drug effects , Substrate Specificity/drug effects , Tumor Suppressor Protein p53/metabolism , Ubiquitination/drug effects , Xenograft Model Antitumor Assays
3.
Gastroenterology ; 152(5): 1187-1202, 2017 04.
Article in English | MEDLINE | ID: mdl-28065789

ABSTRACT

BACKGROUND & AIMS: Choline kinase α (CHKA) catalyzes conversion of choline to phosphocholine and can contribute to carcinogenesis. Little is known about the role of CHKA in the pathogenesis of hepatocellular carcinoma (HCC). METHODS: We performed whole-exome and transcriptome sequence analyses of 9 paired HCC and non-tumor-adjacent tissues. We performed tissue chip analyses of 120 primary HCC and non-tumor-adjacent tissues from patients who received surgery in Shanghai, China from January 2006 through December 2009; 48 sets of specimens (HCC and non-tumor-adjacent tissues) were also analyzed. CHKA gene copy number was quantified and findings were validated by quantitative reverse transcription polymerase chain reaction analysis. CHKA messenger RNA and protein levels were determined by polymerase chain reaction, immunohistochemical, and immunoblot analyses. CHKA was examined in 2 hepatocyte cell lines and 7 HCC-derived cell lines, and knocked down with small interfering RNAs in 3 HCC cell lines. Cells were analyzed in proliferation, wound healing, migration, and invasion assays. Cells were injected into tail veins of mice and tumor growth and metastasis were quantified. Immunoprecipitation and immunofluorescence assays were conducted to determine interactions between CHKA and the epidermal growth factor receptor (EGFR) and the mechanistic target of rapamycin complex 2. RESULTS: Levels of CHKA messenger RNA were frequently increased in HCC tissues compared with nontumor tissues; increased expression was associated with amplification at the CHKA loci. Tumors that expressed high levels of CHKA had more aggressive phenotypes, and patients with these tumors had shorter survival times after surgery compared to patients whose tumors expressed low levels of CHKA. HCC cell lines that stably overexpressed CHKA had higher levels of migration and invasion than control HCC cells, and formed larger xenograft tumors with more metastases in mice compared to HCC cells that did not overexpress CHKA. CHKA was required for physical interaction between EGFR and mechanistic target of rapamycin complex 2. This complex was required for HCC cells to form metastatic xenograft tumors in mice and to become resistant to EGFR inhibitors. CONCLUSIONS: We found levels of CHKA to be increased in human HCCs compared to nontumor tissues, and increased expression to be associated with tumor aggressiveness and reduced survival times of patients. Overexpression of CHKA in HCC cell lines increased their invasiveness, resistance to EGFR inhibitors, and ability to form metastatic tumors in mice by promoting interaction of EGFR with mechanistic target of rapamycin complex 2.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Choline Kinase/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/metabolism , Liver Neoplasms/metabolism , Multiprotein Complexes/metabolism , RNA, Messenger/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line , Cell Line, Tumor , Cell Movement/genetics , Choline Kinase/metabolism , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride/pharmacology , Gefitinib , Hep G2 Cells , Humans , Immunoblotting , Immunohistochemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Mechanistic Target of Rapamycin Complex 2 , Mice , Neoplasm Invasiveness/genetics , Neoplasm Transplantation , Quinazolines/pharmacology , Wound Healing/genetics , Xenograft Model Antitumor Assays
4.
Nat Commun ; 6: 8457, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26443326

ABSTRACT

Merlin, which is encoded by the tumour suppressor gene Nf2, plays a crucial role in tumorigenesis and metastasis. However, little is known about the functional importance of Merlin splicing forms. In this study, we show that Merlin is present at low levels in human hepatocellular carcinoma (HCC), particularly in metastatic tumours, where it is associated with a poor prognosis. Surprisingly, a splicing variant of Merlin that lacks exons 2, 3 and 4 ((Δ2-4)Merlin) is amplified in HCC and portal vein tumour thrombus (PVTT) specimens and in the CSQT2 cell line derived from PVTT. Our studies show that (Δ2-4)Merlin interferes with the capacity of wild-type Merlin to bind ß-catenin and ERM, and it is expressed in the cytoplasm rather than at the cell surface. Furthermore, (Δ2-4)Merlin overexpression increases the expression levels of ß-catenin and stemness-related genes, induces the epithelium-mesenchymal-transition phenotype promoting cell migration in vitro and the formation of lung metastasis in vivo. Our results indicate that the (Δ2-4)Merlin variant disrupts the normal function of Merlin and promotes tumour metastasis.


Subject(s)
Alternative Splicing , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Lung Neoplasms/genetics , Neurofibromin 2/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/secondary , Cell Line, Tumor , Cytoplasm/metabolism , Cytoskeletal Proteins/metabolism , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Male , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Middle Aged , Neoplasm Metastasis , Neurofibromin 2/metabolism , Portal Vein/pathology , Thrombosis/pathology , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...