Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Adv ; 9(22): eadg0478, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37267365

ABSTRACT

Hemodynamic overload and dysregulation of cellular metabolism are involved in development of calcific aortic valve disease (CAVD). However, how mechanical stress relates to metabolic changes in CAVD remains unclear. Here, we show that Piezo1, a mechanosensitive ion channel, regulated glutaminase 1 (GLS1)-mediated glutaminolysis to promote osteogenic differentiation of valve interstitial cells (VICs). In vivo, two models of aortic valve stenosis were constructed by ascending aortic constriction (AAC) and direct wire injury (DWI). Inhibition of Piezo1 and GLS1 in these models respectively mitigated aortic valve lesion. In vitro, Piezo1 activation induced by Yoda1 and oscillatory stress triggered osteogenic responses in VICs, which were prevented by Piezo1 inhibition or knockdown. Mechanistically, Piezo1 activation promoted calcium-dependent Yes-associated protein (YAP) activation. YAP modulated GLS1-mediated glutaminolysis, which enhanced osteogenic differentiation through histone acetylation of runt-related transcription factor 2 (RUNX2) promoters. Together, our work provided a cross-talk between mechanotransduction and metabolism in the context of CAVD.


Subject(s)
Aortic Valve , Osteogenesis , Aortic Valve/metabolism , Aortic Valve/pathology , Osteogenesis/genetics , Mechanotransduction, Cellular , Cells, Cultured , Cell Differentiation/genetics
3.
Antioxidants (Basel) ; 11(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36358465

ABSTRACT

BACKGROUND: No effective therapeutic agents for calcific aortic valve disease (CAVD) are available currently. Dietary supplementation has been proposed as a novel treatment modality for various diseases. As a flavanone, hesperetin is widely abundant in citrus fruits and has been proven to exert protective effects in multiple diseases. However, the role of hesperetin in CAVD remains unclear. METHODS: Human aortic valve interstitial cells (VICs) were isolated from aortic valve leaflets. A mouse model of aortic valve stenosis was constructed by direct wire injury (DWI). Immunoblotting, immunofluorescence staining, and flow cytometry were used to investigate the roles of sirtuin 7 (Sirt7) and nuclear factor erythroid 2-related factor 2 (Nrf2) in hesperetin-mediated protective effects in VICs. RESULTS: Hesperetin supplementation protected the mice from wire-injury-induced aortic valve stenosis; in vitro, hesperetin inhibited the lipopolysaccharide (LPS)-induced activation of NF-κB inflammatory cytokine secretion and osteogenic factors expression, reduced ROS production and apoptosis, and abrogated LPS-mediated injury to the mitochondrial membrane potential and the decline in the antioxidant levels in VICs. These benefits of hesperetin may have been obtained by activating Nrf2-ARE signaling, which corrected the dysfunctional mitochondria. Furthermore, we found that hesperetin could directly bind to Sirt7 and that the silencing of Sirt7 decreased the effects of hesperetin in VICs and potently abolished the ability of hesperetin to increase Nrf2 transcriptional activation. CONCLUSIONS: Our work demonstrates that hesperetin plays protective roles in the aortic valve through the Sirt7-Nrf2-ARE axis; thus, hesperetin might be a potential dietary supplement that could prevent the development of CAVD.

SELECTION OF CITATIONS
SEARCH DETAIL
...