Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1195314, 2023.
Article in English | MEDLINE | ID: mdl-37305410

ABSTRACT

Tularemia is a highly contagious disease caused by infection with Francisella tularensis (Ft), a pathogenic intracellular gram-negative bacterium that infects a wide range of animals and causes severe disease and death in people, making it a public health concern. Vaccines are the most effective way to prevent tularemia. However, there are no Food and Drug Administration (FDA)-approved Ft vaccines thus far due to safety concerns. Herein, three membrane proteins of Ft, Tul4, OmpA, and FopA, and a molecular chaperone, DnaK, were identified as potential protective antigens using a multifactor protective antigen platform. Moreover, the recombinant DnaK, FopA, and Tul4 protein vaccines elicited a high level of IgG antibodies but did not protect against challenge. In contrast, protective immunity was elicited by a replication-defective human type 5 adenovirus (Ad5) encoding the Tul4, OmpA, FopA, and DnaK proteins (Ad5-Tul4, Ad5-OmpA, Ad5-FopA, and Ad5-DnaK) after a single immunization, and all Ad5-based vaccines stimulated a Th1-biased immune response. Moreover, intramuscular and intranasal vaccination with Ad5-Tul4 using the prime-boost strategy effectively eliminated Ft lung, spleen and liver colonization and provided nearly 80% protection against intranasal challenge with the Ft live vaccine strain (LVS). Only intramuscular, not intranasal vaccination, with Ad5-Tul4 protected mice from intraperitoneal challenge. This study provides a comprehensive comparison of protective immunity against Ft provided by subunit or adenovirus-vectored vaccines and suggests that mucosal vaccination with Ad5-Tul4 may yield desirable protective efficacy against mucosal infection, while intramuscular vaccination offers greater overall protection against intraperitoneal tularemia.


Subject(s)
Adenoviruses, Human , Francisella tularensis , Tularemia , Humans , Animals , Mice , Francisella tularensis/genetics , Tularemia/prevention & control , Vaccination , Vaccines, Attenuated
2.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835236

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease of unknown etiology. At present, the mortality rate of the deadly disease is still very high, while the existing treatments only delay the progression of the disease and improve the quality of life of patients. Lung cancer (LC) is the most fatal disease in the world. In recent years, IPF has been considered to be an independent risk factor for the development of LC. The incidence of lung cancer is increased in the patients with IPF and the mortality is also significantly increased in the patients inflicted with the two diseases. In this study, we evaluated an animal model of pulmonary fibrosis complicated with LC by implanting LC cells orthotopically into the lungs of mice several days after bleomycin induction of the pulmonary fibrosis in the same mice. In vivo studies with the model showed that exogenous recombinant human thymosin beta 4 (exo-rhTß4) alleviated the impairment of lung function and severity of damage of the alveolar structure by the pulmonary fibrosis and inhibited the proliferation of LC tumor growth. In addition, in vitro studies showed that exo-rhTß4 inhibited the proliferation and migration of A549 and Mlg cells. Furthermore, our results also showed that rhTß4 could effectively inhibit the JAK2-STAT3 signaling pathway and this might exert an anti-IPF-LC effect. The establishment of the IPF-LC animal model will be helpful for the development of drugs for the treatment of IPF-LC. Exogenous rhTß4 can be potentially used for the treatment of IPF and LC.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Neoplasms , Thymosin , Animals , Humans , Mice , Bleomycin , Idiopathic Pulmonary Fibrosis/therapy , Janus Kinase 2/metabolism , Lung/pathology , Lung Neoplasms/therapy , Quality of Life , Signal Transduction , STAT3 Transcription Factor/metabolism , Thymosin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...