Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(16): 25477-25489, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710433

ABSTRACT

Broader spectra, lower reflectivity and higher reliability are the performance requirements for broadband antireflective (BBAR) films. In this work, a BBAR film structure was proposed, which maintains extremely low reflectivity, ultra-wide spectra, low polarization sensitivity and practical reliability. The BBAR film consists of a dense multilayer interference stack on the bottom and a nano-grass-like alumina (NGLA) layer with a gradient low refractive index distribution on the top. The film was deposited by atomic layer deposition, while the NGLA layer was formed by means of a hot water bath on Al2O3 layer. The top NGLA layer has extremely high porosity and ultra-low refractive index, along with extremely fragile structure. To surmount the fragility of NGLA layer, a sub-nano layer of SiO2 was grown by atomic layer deposition to solidify its structure and also to adjust the refractive index with different thicknesses of SiO2. Finally, in the wide wavelength range of 400-1100 nm, the average transmittance of the double-sided coated fused quartz reaches 99.2%. The absorption, light scattering, reliability and polarization characteristics of BBAR films were investigated. An optimized BBAR film with low polarization-sensitivity and improved reliability was realized, which should be potentially promising for application in optical systems.

2.
Nanomaterials (Basel) ; 13(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513119

ABSTRACT

Transparent conductors (TC) have been widely applied in a wide range of optoelectronic devices. Nevertheless, different transparent spectral bands are always needed for particular applications. In this work, indium tin oxide (ITO)-free TCs with tunable transparent bands based on the film structure of TiO2/Ag/AZO (Al-doped ZnO) were designed by the transfer matrix method and deposited by magnetron sputtering. The transparent spectra and figure-of-merit (FOM) were effectively adjusted by precisely controlling the Ag layer's thickness. The fabricated as-deposited samples exhibited an average optical transmittance larger than 88.3% (400-700 nm), a sheet resistance lower than 7.7 Ω.sq-1, a low surface roughness of about 1.4 nm, and mechanical stability upon 1000 bending cycles. Moreover, the samples were able to hold optical and electrical properties after annealing at 300 °C for 60 min, but failed at 400 °C even for 30 min.

3.
Opt Express ; 31(8): 13503-13517, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157487

ABSTRACT

Optimizing the atomic layer deposition (ALD) process of films is particularly important in preparing multilayer interference films. In this work, a series of Al2O3/TiO2 nano-laminates with a fixed growth cycle ratio of 1:10 were deposited on Si and fused quartz substrates at 300 °C by ALD. The optical properties, crystallization behavior, surface appearance and microstructures of those laminated layers were systematically investigated by spectroscopic ellipsometry, spectrophotometry, X-ray diffraction, atomic force microscope and transmission electron microscopy. By inserting Al2O3 interlayers into TiO2 layers, the crystallization of the TiO2 is reduced and the surface roughness becomes smaller. The TEM images show that excessively dense distribution of Al2O3 intercalation leads to the appearance of TiO2 nodules, which in turn leads to increased roughness. The Al2O3/TiO2 nano-laminate with a cycle ratio 40:400 has relatively small surface roughness. Additionally, oxygen-deficient defects exist at the interface of Al2O3 and TiO2, leading to evident absorption. Using O3 as an oxidant instead of H2O for depositing Al2O3 interlayers was verified to be effective in reducing absorption during broadband antireflective coating experiments.

4.
Opt Express ; 29(9): 13815-13828, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33985110

ABSTRACT

A reaction chamber of atomic layer deposition (ALD) was developed for simultaneous coating on the inner and outer surfaces of a large-size and strongly curved glass bowl. The inner surface ALD process was in a showerhead reaction mode and the outer surface ALD process was in a cross-flow reaction mode. Blue reflection (BR) film of 400 nm wavelength and broadband antireflection (BBAR) film of 400-700 nm wavelength were coated on different glass bowls by ALD. The spectral uniformity of both coated bowls was studied. The measured spectra at multiple positions of the glass bowl with the BBAR coating show better spectral uniformity along the circumference than the depth. The spectral deviation is mainly caused by the non-uniformity of the film on the outer surface (<±3%), and the film on the inner surface has good uniformity along both the circumference and the depth (<±0.7%). The growth rate of the outer film was reduced by 10% on average compared to that of the inner film due to the different gas flow mode.

5.
Nanotechnology ; 32(19): 195205, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33540395

ABSTRACT

Quaternary Ag-In-Zn-S (AIZS) quantum dots (QDs) play critical roles in various applications since they have advantages of combining superior optical and electrical features, such as tunable fluorescence emission and high carrier mobilities. However, the application of semiconductor AIZS QDs in brain-inspired devices (e.g. memristor) has been rarely reported. In this work, the tunable volatile threshold switching (TS) and non-volatile memory switching (MS) behaviors have been obtained in a memristor composed of AIZS QDs by regulating the magnitude of compliance current. Additionally, the innovative Ag/AIZS structure devices without traditional oxide layer exhibit low operation voltage (∼0.25 V) and programming current (100 nA) under the TS mode. Moreover, the devices achieve reproducible bipolar resistive switching (RS) behaviors with large ON/OFF ratio of ∼105, ultralow power consumption of ∼10-10 W, and good device-to-device uniformity under the MS mode. Furthermore, the charge transport mechanisms of the high- and low-resistance states under the positive and negative bias have been analyzed with space-charge-limited-current and filament conduction models, respectively. This work not only validates the potential of AIZS QDs acting as dielectric layer in RS devices but also provides a new guideline for designing ultralow power and multiple RS characteristics devices.

6.
Sci Rep ; 9(1): 12434, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31455835

ABSTRACT

In this work, the two-dimensional profile of the light transmission through a prism-like metallic film sample of Au was measured at a wavelength of 632.8 nm in the visible intraband transition region to verify that, beyond the possible mechanisms of overcoming the diffraction limit, a strongly nonuniform optical absorption path length of the light traveling in the metal could induce a lensing effect, thereby narrowing the image of an object. A set of prism-like Au samples with different angles was prepared and experimentally investigated. Due to the nonuniform paths of the light traveling in the Au samples, lens-effect-like phenomena were clearly observed that reduced the imaged size of the beam spot with decreasing light intensity. The experimental measurements presented in the work may provide new insight to better understand the light propagation behavior at a metal/dielectric interface.

7.
Sci Rep ; 8(1): 12660, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30139954

ABSTRACT

Optical spectrometers play an important role in modern scientific research. In this work, we present a two-channel spectrometer with a pixel resolution of better than 0.1 nm/pixel in the wavelength range of 200 to 950 nm and an acquisition speed of approximately 25 spectra per second. The spectrometer reaches a high k factor which characterizes the spectral performance of the spectrometer as k = (working wavelength region)/(pixel resolution) = 7500. Instead of using mechanical moving parts in traditional designs, the spectrometer consists of 8 integrated sub-gratings for diffracting and imaging two sets of 4-folded spectra on the upper and lower parts, respectively, of the focal plane of a two-dimensional backside-illuminated complementary metal-oxide-semiconductor (BSI-CMOS) array detector, which shows a high peak quantum efficiency of approximately 90% at 400 nm. In addition to the advantage of being cost-effective, the compact design of the spectrometer makes it advantageous for applications in which it is desirable to use the same two-dimensional array detector to simultaneously measure multiple spectra under precisely the same working conditions to reduce environmental effects. The performance of the finished spectrometer is tested and confirmed with an Hg-Ar lamp.

8.
Sci Rep ; 7: 44614, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28300178

ABSTRACT

In this work, 4-layered SiO2/Bi2Te3/SiO2/Cu film structures were designed and fabricated and the optical properties investigated in the wavelength region of 250-1200 nm for their promising applications for direct solar-thermal-electric conversion. A typical 4-layered film sample with the structure SiO2 (66.6 nm)/Bi2Te3 (7.0 nm)/SiO2 (67.0 nm)/Cu (>100.0 nm) was deposited on a Si or K9-glass substrate by magnetron sputtering. The experimental results agree well with the simulated ones showing an average optical absorption of 96.5%, except in the shorter wavelength region, 250-500 nm, which demonstrates the superior absorption property of the 4-layered film due to the randomly rough surface of the Cu layer resulting from the higher deposition power. The high reflectance of the film structure in the long wavelength region of 2-20 µm will result in a low thermal emittance, 0.064 at 600 K. The simpler 4-layered structure with the thermoelectric Bi2Te3 used as the absorption layer may provide a straightforward way to obtain solar-thermal-electric conversion more efficiently through future study.

9.
Opt Lett ; 41(21): 4907-4910, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27805647

ABSTRACT

A new method for measuring the dielectric functions change with the thickness of nanometal thin films was proposed. To confirm the accuracy and reliability of the method, a nano-thin wedge-shaped gold (Au) film with continuously varied thicknesses was designed and prepared on K9 glass by direct-current-sputtering (DC-sputtering). The thicknesses and the dielectric functions in the wavelength range of 300-1100 nm of the nano-thin Au films were obtained by fitting the ellipsometric parameters with the Drude and critical points model. Results show that while the real part of the dielectric function (ϵ1) changes marginally with increasing film thickness, the imaginary part (ϵ2) decreases drastically with the film thickness, approaching a stable value when the film thickness increases up to about 42 nm. This method is particularly useful in the study of thickness-dependent optical properties of nano-thin film.

10.
Opt Express ; 22 Suppl 7: A1843-52, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25607498

ABSTRACT

The optical properties and thermal stability of a 6-layered metal/dielectric film structure are investigated in this work. A high optical absorption average of > 98% is achieved in the broad spectral range of 250-1200 nm with experiment results, in good agreement with our simulated results. The samples have a typical layered structure of: SiO(2)(57.3 nm)/Ti(5.7 nm)/SiO(2) (67.1 nm)/Ti(11.6 nm)/SiO(2)(51.4 nm)/Cu(>100 nm), deposited on optically polished Si or K9-glass substrates by magnetron sputtering. The sample of the 6-layered metal/dielectric film structure has an AM1.5G solar absorptance of 95.5% with the features of low thermal emittance of 0.136 at 700K and good thermal stability, and will be potentially suitable for practical application in high-efficiency solar absorber devices in many fields.

11.
Opt Express ; 20(27): 28953-62, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23263136

ABSTRACT

Optical properties and thermal stability of the solar selective absorber based on the metal/dielectric four-layer film structure were investigated in the variable temperature region. Numerical calculations were performed to simulate the spectral properties of multilayer stacks with different metal materials and film thickness. The typical four-layer film structure using the transition metal Cr as the thin solar absorbing layer [SiO(2)(90nm)/Cr(10nm)/SiO(2)(80nm)/Al (≥100nm)] was fabricated on the Si or K9 glass substrate by using the magnetron sputtering method. The results indicate that the metal/dielectric film structure has a good spectral selective property suitable for solar thermal applications with solar absorption efficiency higher than 95% in the 400-1200nm wavelength range and a very low thermal emittance in the infrared region. The solar selective absorber with the thin Cr layer has shown a good thermal stability up to the temperature of 873K under vacuum atmosphere. The experimental results are in good agreement with the calculated spectral results.


Subject(s)
Chromium/chemistry , Membranes, Artificial , Nanoparticles/chemistry , Solar Energy , Absorption , Chromium/radiation effects , Energy Transfer , Materials Testing , Nanoparticles/radiation effects , Temperature
12.
Opt Express ; 20(1): A28-38, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22379676

ABSTRACT

In order to overcome some physical limits, a solar system consisting of five single-junction photocells with four optical filters is studied. The four filters divide the solar spectrum into five spectral regions. Each single-junction photocell with the highest photovoltaic efficiency in a narrower spectral region is chosen to optimally fit into the bandwidth of that spectral region. Under the condition of solar radiation ranging from 2.4 SUN to 3.8 SUN (AM1.5G), the measured peak efficiency under 2.8 SUN radiation reaches about 35.6%, corresponding to an ideal efficiency of about 42.7%, achieved for the photocell system with a perfect diode structure. Based on the detailed-balance model, the calculated theoretical efficiency limit for the system consisting of 5 single-junction photocells can be about 52.9% under 2.8 SUN (AM1.5G) radiation, implying that the ratio of the highest photovoltaic conversion efficiency for the ideal photodiode structure to the theoretical efficiency limit can reach about 80.7%. The results of this work will provide a way to further enhance the photovoltaic conversion efficiency for solar cell systems in future applications.


Subject(s)
Computer-Aided Design , Electric Power Supplies , Filtration/instrumentation , Models, Theoretical , Solar Energy , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...