Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Thorac Dis ; 15(4): 2012-2021, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37197556

ABSTRACT

Background: Orthotopic models of lung cancer have been widely utilized, and the purpose of this study was to demonstrate the viability of our proposed modified modeling approach. Methods: A total of 50 female BALB/c mice were implanted with 1×1×1 mm fragments of a tumor sample into the left lung lobe. After 2 months of observation, the mice were humanely euthanized through CO2 inhalation. The macroscopic specimens were photographed, and the most representative neoplastic lesions were collected for histological analysis. Small-animal positron emission tomography/computed tomography (PET/CT) scans were conducted on 6 randomly selected mice. Results: Local tumor formation, ipsilateral thoracic tissue infiltration, the contralateral chest wall, right lung metastases, and distant kidney metastases were observed in these models. Overall, the tumor development and metastasis rates were 60.86% (28/46) and 57.14% (16/28), respectively. The 3 mice that had a small-animal PET/CT scan developed a local tumor, but no distant metastases were observed. Conclusions: This modified method was deemed reliable, reproducible, minimally invasive, straightforward, and comprehensible; it might serve as the foundation for developing patient-derived orthotopic xenografts of lung cancer.

2.
Sci Rep ; 10(1): 4681, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170125

ABSTRACT

Triple-negative breast cancer (TNBC) has a more aggressive phenotype and higher metastasis and recurrence rates than other breast cancer subtypes. TNBC currently lacks a transplantation model that is suitable for clinical simulations of the tumor microenvironment. Intraductal injection of tumor cells into the mammary duct could mimic the occurrence and development of breast cancer. Herein, we injected 4T1 cells into the mammary ducts of BALB/C mice to build a preclinical model of TNBC and optimized the related construction method to observe the occurrence and spontaneous metastasis of tumors. We compared the effects of different cell numbers on tumorigenesis rates, times to tumorigenesis, and metastases to determine the optimal number of cells for modelling. We demonstrated that 4T1-MIND model mice injected with 20,000 cells revealed a suitable tumor formation rate and time, thus indicating a potential treatment time window after distant metastasis. We also injected 20,000 cells directly into the breast fat pad or breast duct for parallel comparison. The results still showed that the 4T1-MIND model provides sufficient treatment time for lung metastases in mice and that it is a more reliable model for early tumor development. The 4T1-MIND model requires continuous improvement and optimization. A suitable and optimized model for translational research and studies on the microenvironment in TNBC should be developed.


Subject(s)
Disease Models, Animal , Mammary Neoplasms, Experimental/pathology , Triple Negative Breast Neoplasms/pathology , Animals , Biopsy , Female , Immunohistochemistry , Isografts , Mice , Models, Biological , Neoplasm Metastasis , Neoplasm Staging , Organ Specificity , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL
...