Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 21(4): 2153-2165, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30644475

ABSTRACT

Singlet fission (SF) materials are a kind of promising material for breaking the solar cell efficiency limit. Here we rebuild the four-electron spin Hamiltonian under our coordinate system and present an improved model described by the population evolution equations on fluorescence decay (FD) dynamics that contain several detailed physical processes. The improved model for total random molecular orientation gives a more consistent fitting on the experimental data [G. B. Piland et al., J. Phys. Chem. C, 2013, 117, 1224] about time-resolved FD of amorphous rubrene thin films in the presence of a strong magnetic field. The fitting can reflect the relative rates of the real physical processes. Further on, our results show two kinds of magnetic field effect for the variety of two molecular relative orientations with respect to each other and the magnetic field by investigating the singlet projection and FD dynamics of the system.

2.
Phys Rev E ; 93(2): 022214, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26986338

ABSTRACT

We study the collective dynamics of the spin-orbit coupled two pseudospin components of a Bose-Einstein condensate trapped in a quasi-one-dimensional harmonic potential, by using variational and directly numerical approach of binary mean-field Gross-Pitaevskii equations. The results show that, because of strong coupling of spin-orbit coupling (SOC), Rabi coupling, and atomic interaction, the collective dynamics of the system behave as complex characters. When the Rabi coupling is absent, the density profiles of the system preserve the Gauss type and the wave packets do harmonic oscillations. The amplitude of the collective oscillations increases with SOC. Furthermore, when the SOC strength increases, the dipole oscillations of the two pseudospin components undergo a transition from in-phase to out-of-phase oscillations. When the Rabi coupling present, there will exist a critical value of SOC strength (which depends on the Rabi coupling and atomic interaction). If the SOC strength is less than this critical value, the density profiles of the system can preserve the Gauss type and the wave packets do anharmonic (the frequency of dipole oscillations depends on SOC) oscillations synchronously (i.e., in-phase oscillations). However, if the SOC strength is larger than this critical value, the wave packets are dynamically fragmented and the stable dipole oscillations of the system can not exist. The collective dynamics of the system can be controlled by adjusting the atomic interaction, SOC, and Rabi-coupling strength.

SELECTION OF CITATIONS
SEARCH DETAIL
...