Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Sci Transl Med ; 16(734): eade7347, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38354227

ABSTRACT

Nonalcoholic fatty liver (NAFL) remains relatively benign, but high-risk to end-stage liver diseases become highly prevalent when it progresses into nonalcoholic steatohepatitis (NASH). Our current understanding of the development of NAFL to NASH remains insufficient. In this study, we revealed MAP kinase (MAPK) activation as the most notable molecular signature associated with NASH progression across multiple species. Furthermore, we identified suppressor of IKKε (SIKE) as a conserved and potent negative controller of MAPK activation. Hepatocyte-specific overexpression of Sike prevented NASH progression in diet- and toxin-induced mouse NASH models. Mechanistically, SIKE directly interacted with TGF-ß-activated kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) to interrupt their binding and subsequent TAK1-MAPK signaling activation. We found that indobufen markedly up-regulated SIKE expression and effectively improved NASH features in mice and macaques. These findings identify SIKE as a MAPK suppressor that prevents NASH progression and provide proof-of-concept evidence for targeting the SIKE-TAK1 axis as a potential NASH therapy.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction/physiology , Hepatocytes/metabolism , Gene Expression Profiling , Mitogen-Activated Protein Kinases/metabolism , Liver/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
2.
Front Immunol ; 14: 1167667, 2023.
Article in English | MEDLINE | ID: mdl-37304282

ABSTRACT

Background and aims: In the course of clinical practice, hepatic ischemia/reperfusion (I/R) injury is a prevalent pathophysiological event and is caused by a combination of complex factors that involve multiple signaling pathways such as MAPK and NF-κB. USP29 is a deubiquitinating enzyme important during the development of tumors, neurological diseases, and viral immunity. However, it is unknown how USP29 contributes to hepatic I/R injury. Methods and results: We systematically investigated the role of the USP29/TAK1-JNK/p38 signaling pathway in hepatic I/R injury. We first found reduced USP29 expression in both mouse hepatic I/R injury and the primary hepatocyte hypoxia-reoxygenation (H/R) models. We established USP29 full knockout mice (USP29-KO) and hepatocyte-specific USP29 transgenic mice (USP29-HTG), and we found that USP29 knockout significantly exacerbates the inflammatory infiltration and injury processes during hepatic I/R injury, whereas USP29 overexpression alleviates liver injury by decreasing the inflammatory response and inhibiting apoptosis. Mechanistically, RNA sequencing results showed the effects of USP29 on the MAPK pathway, and further studies revealed that USP29 interacts with TAK1 and inhibits its k63-linked polyubiquitination, thereby preventing the activation of TAK1 and its downstream signaling pathways. Consistently, 5z-7-Oxozeaneol, an inhibitor of TAK1, blocked the detrimental effects of USP29 knockout on H/R-induced hepatocyte injury, further confirming that USP29 plays a regulatory role in hepatic I/R injury by targeting TAK1. Conclusion: Our findings imply that USP29 is a therapeutic target with promise for the management of hepatic I/R injury via TAK1-JNK/p38 pathway-dependent processes.


Subject(s)
MAP Kinase Kinase Kinases , Reperfusion Injury , Animals , Mice , Liver , MAP Kinase Kinase Kinases/genetics , Mice, Knockout , Mice, Transgenic , Reperfusion Injury/genetics , Ubiquitin-Specific Proteases/genetics
3.
J Lipid Res ; 64(7): 100382, 2023 07.
Article in English | MEDLINE | ID: mdl-37116711

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease worldwide, without any Food and Drug Administration-approved pharmacological intervention in clinic. Trim38, as an important member of the TRIM (tripartite motif-containing) family, was largely reported to be involved in the regulation of innate immune and inflammatory responses. However, the functional roles of TRIM38 in NAFLD remain largely unknown. Here, the expression of TRIM38 was first detected in liver samples of both NAFLD mice model and patients diagnosed with NAFLD. We found that TRIM38 expression was downregulated in NAFLD liver tissues compared with normal liver tissues. Genetic Trim38-KO in vivo showed that TRIM38 depletion deteriorated the high-fat diet and high fat and high cholesterol diet-induced hepatic steatosis and high fat and high cholesterol diet-induced liver inflammation and fibrosis. In particular, we found that the effects of hepatocellular lipid accumulation and inflammation induced by palmitic acid and oleic acid were aggravated by TRIM38 depletion but mitigated by TRIM38 overexpression in vitro. Mechanically, RNA-Seq analysis demonstrated that TRIM38 ameliorated nonalcoholic steatohepatitis progression by attenuating the activation of MAPK signaling pathway. We further found that TRIM38 interacted with transforming growth factor-ß-activated kinase 1 binding protein 2 and promoted its protein degradation, thus inhibiting the transforming growth factor-ß-activated kinase 1-MAPK signal cascades. In summary, our study revealed that TRIM38 could suppress hepatic steatosis, inflammatory, and fibrosis in NAFLD via promoting transforming growth factor-ß-activated kinase 1 binding protein 2 degradation. TRIM38 could be a potential target for NAFLD treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Carrier Proteins/metabolism , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Liver/metabolism , MAP Kinase Signaling System , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
4.
J Am Heart Assoc ; 12(7): e028628, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36974751

ABSTRACT

Background Pathological cardiac hypertrophy is regarded as a critical precursor and independent risk factor of heart failure, and its inhibition prevents the progression of heart failure. Switch-associated protein 70 (SWAP70) is confirmed important in immunoregulation, cell maturation, and cell transformation. However, its role in pathological cardiac hypertrophy remains unclear. Methods and Results The effects of SWAP70 on pathological cardiac hypertrophy were investigated in Swap70 knockout mice and Swap70 overexpression/knockdown cardiomyocytes. Bioinformatic analysis combined with multiple molecular biological methodologies were adopted to elucidate the mechanisms underlying the effects of SWAP70 on pathological cardiac hypertrophy. Results showed that SWAP70 protein levels were significantly increased in failing human heart tissues, experimental transverse aortic constriction-induced mouse hypertrophic hearts, and phenylephrine-stimulated isolated primary cardiomyocytes. Intriguingly, phenylephrine treatment decreased the lysosomal degradation of SWAP70 by disrupting the interaction of SWAP70 with granulin precursor. In vitro and in vivo experiments revealed that Swap70 knockdown/knockout accelerated the progression of pathological cardiac hypertrophy, while Swap70 overexpression restrained the cardiomyocyte hypertrophy. SWAP70 restrained the binding of transforming growth factor ß-activated kinase 1 (TAK1) and TAK1 binding protein 1, thus blocking the phosphorylation of TAK1 and downstream c-Jun N-terminal kinase/P38 signaling. TAK1 interacted with the N-terminals (1-192) of SWAP70. Swap70 (193-585) overexpression failed to inhibit cardiac hypertrophy when the TAK1-SWAP70 interaction was disrupted. Either inhibiting the phosphorylation or suppressing the expression of TAK1 rescued the exaggerated cardiac hypertrophy induced by Swap70 knockdown. Conclusions SWAP70 suppressed the progression of cardiac hypertrophy, possibly by inhibiting the mitogen-activated protein kinases signaling pathway in a TAK1-dependent manner, and lysosomes are involved in the regulation of SWAP70 expression level.


Subject(s)
Cardiomegaly , Heart Failure , Animals , Humans , Mice , Cardiomegaly/genetics , Cardiomegaly/prevention & control , Cardiomegaly/metabolism , DNA-Binding Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Heart Failure/genetics , Heart Failure/prevention & control , Heart Failure/metabolism , Mice, Knockout , Minor Histocompatibility Antigens/metabolism , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Phenylephrine/pharmacology , Signal Transduction
5.
Circ Res ; 130(10): 1586-1600, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35437018

ABSTRACT

BACKGROUND: Pathological cardiac hypertrophy is one of the leading causes of heart failure with highly complicated pathogeneses. The E3 ligase TRIM16 (tripartite motif-containing protein 16) has been recognized as a pivotal regulator to control cell survival, immune response, and oxidativestress. However, the role of Trim16 in cardiac hypertrophy is unknown. METHODS: We generated cardiac-specific knockout mice and adeno-associated virus serotype 9-Trim16 mice to evaluate the function of Trim16 in pathological myocardial hypertrophy. The direct effect of TRIM16 on cardiomyocyte enlargement was examined using an adenovirus system. Furthermore, we combined RNA-sequencing and interactome analysis that was followed by multiple molecular biological methodologies to identify the direct target and corresponding molecular events contributing to TRIM16 function. RESULTS: We found an intimate correlation of Trim16 expression with hypertrophy-related heart failure in both human and mouse. Our functional investigations and unbiased transcriptomic analyses clearly demonstrated that Trim16 deficiency markedly exacerbated cardiomyocyte enlargement in vitro and in transverse aortic constriction-induced cardiac hypertrophy mouse model, whereas Trim16 overexpression attenuated cardiac hypertrophy and remodeling. Mechanistically, Prdx1 (peroxiredoxin 1) is an essential target of Trim16 in cardiac hypertrophy. We found that Trim16 interacts with Prdx1 and inhibits its phosphorylation, leading to a robust enhancement of its downstream Nrf2 (nuclear factor-erythroid 2-related factor 2) pathway to block cardiac hypertrophy. Trim16-blocked Prdx1 phosphorylation was largely dependent on a direct interaction between Trim16 and Src and the resultant Src ubiquitinational degradation. Notably, Prdx1 knockdown largely abolished the anti-hypertrophic effects of Trim16 overexpression. CONCLUSIONS: Our findings provide the first evidence supporting Trim16 as a novel suppressor of pathological cardiac hypertrophy and indicate that targeting the Trim16-Prdx1 axis represents a promising therapeutic strategy for hypertrophy-related heart failure.


Subject(s)
Cardiomegaly , Heart Failure , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Cardiomegaly/metabolism , Disease Models, Animal , Heart Failure/metabolism , Mice , Mice, Knockout , Myocytes, Cardiac/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
6.
Hepatology ; 76(4): 1105-1120, 2022 10.
Article in English | MEDLINE | ID: mdl-35152446

ABSTRACT

BACKGROUND AND AIMS: NAFLD represents an increasing health problem in association with obesity and diabetes with no effective pharmacotherapies. Growing evidence suggests that several FGFs play important roles in diverse aspects of liver pathophysiology. Here, we report a previously unappreciated role of FGF4 in the liver. APPROACH AND RESULTS: Expression of hepatic FGF4 is inversely associated with NAFLD pathological grades in both human patients and mouse models. Loss of hepatic Fgf4 aggravates hepatic steatosis and liver damage resulted from an obesogenic high-fat diet. By contrast, pharmacological administration of recombinant FGF4 mitigates hepatic steatosis, inflammation, liver damage, and fibrogenic markers in mouse livers induced to develop NAFLD and NASH under dietary challenges. Such beneficial effects of FGF4 are mediated predominantly by activating hepatic FGF receptor (FGFR) 4, which activates a downstream Ca2+ -Ca2+ /calmodulin-dependent protein kinase kinase beta-dependent AMP-activated protein kinase (AMPK)-Caspase 6 signal axis, leading to enhanced fatty acid oxidation, reduced hepatocellular apoptosis, and mitigation of liver damage. CONCLUSIONS: Our study identifies FGF4 as a stress-responsive regulator of liver pathophysiology that acts through an FGFR4-AMPK-Caspase 6 signal pathway, shedding light on strategies for treating NAFLD and associated liver pathologies.


Subject(s)
Non-alcoholic Fatty Liver Disease , AMP-Activated Protein Kinases/metabolism , Animals , Caspase 6/metabolism , Caspase 6/pharmacology , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Fibroblast Growth Factor 4/metabolism , Fibroblast Growth Factor 4/pharmacology , Fibroblast Growth Factor 4/therapeutic use , Humans , Liver/pathology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Fibroblast Growth Factor/therapeutic use
7.
J Hepatol ; 76(2): 407-419, 2022 02.
Article in English | MEDLINE | ID: mdl-34656650

ABSTRACT

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. The advanced stage of NAFLD, non-alcoholic steatohepatitis (NASH), has been recognized as a leading cause of end-stage liver injury for which there are no FDA-approved therapeutic options. Glutathione S-transferase Mu 2 (GSTM2) is a phase II detoxification enzyme. However, the roles of GSTM2 in NASH have not been elucidated. METHODS: Multiple RNA-seq analyses were used to identify hepatic GSTM2 expression in NASH. In vitro and in vivo gain- or loss-of-function approaches were used to investigate the role and molecular mechanism of GSTM2 in NASH. RESULTS: We identified GSTM2 as a sensitive responder and effective suppressor of NASH progression. GSTM2 was significantly downregulated during NASH progression. Hepatocyte GSTM2 deficiency markedly aggravated insulin resistance, hepatic steatosis, inflammation and fibrosis induced by a high-fat diet and a high-fat/high-cholesterol diet. Mechanistically, GSTM2 sustained MAPK pathway signaling by directly interacting with apoptosis signal-regulating kinase 1 (ASK1). GSTM2 directly bound to the N-terminal region of ASK1 and inhibited ASK1 N-terminal dimerization to subsequently repress ASK1 phosphorylation and the activation of its downstream JNK/p38 signaling pathway under conditions of metabolic dysfunction. CONCLUSIONS: These data demonstrated that hepatocyte GSTM2 is an endogenous suppressor that protects against NASH progression by blocking ASK1 N-terminal dimerization and phosphorylation. Activating GSTM2 holds promise as a therapeutic strategy for NASH. CLINICAL TRIAL NUMBER: IIT-2021-277. LAY SUMMARY: New therapeutic strategies for non-alcoholic steatohepatitis are urgently needed. We identified that the protein GSTM2 exerts a protective effect in response to metabolic stress. Therapies that aim to increase the activity of GSTM2 could hold promise for the treatment of non-alcoholic steatohepatitis.


Subject(s)
Glutathione Transferase/pharmacology , MAP Kinase Kinase Kinase 5/antagonists & inhibitors , Non-alcoholic Fatty Liver Disease/prevention & control , Animals , Biopsy/methods , Biopsy/statistics & numerical data , Disease Models, Animal , Gene Targeting/methods , Gene Targeting/standards , Gene Targeting/statistics & numerical data , Glutathione Transferase/metabolism , Hepatocytes/metabolism , Hepatocytes/physiology , Liver/pathology , MAP Kinase Kinase Kinase 5/therapeutic use , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Sequence Analysis, RNA/methods , Sequence Analysis, RNA/statistics & numerical data
8.
Hepatology ; 75(6): 1446-1460, 2022 06.
Article in English | MEDLINE | ID: mdl-34662438

ABSTRACT

BACKGROUND AND AIMS: Ischemia-reperfusion (I/R) injury is an inevitable complication of liver transplantation (LT) and compromises its prognosis. Glycosyltransferases have been recognized as promising targets for disease therapy, but their roles remain open for study in hepatic I/R (HIR) injury. Here, we aim to demonstrate the exact function and molecular mechanism of a glycosyltransferase, N-acetylgalactosaminyltransferase-4 (GALNT4), in HIR injury. APPROACH AND RESULTS: By an RNA-sequencing data-based correlation analysis, we found a close correlation between GALNT4 expression and HIR-related molecular events in a murine model. mRNA and protein expression of GALNT4 were markedly up-regulated upon reperfusion surgery in both clinical samples from subjects who underwent LT and in a mouse model. We found that GALNT4 deficiency significantly exacerbated I/R-induced liver damage, inflammation, and cell death, whereas GALNT4 overexpression led to the opposite phenotypes. Our in-depth mechanistic exploration clarified that GALNT4 directly binds to apoptosis signal-regulating kinase 1 (ASK1) to inhibit its N-terminal dimerization and subsequent phosphorylation, leading to a robust inactivation of downstream c-Jun N-terminal kinase (JNK)/p38 and NF-κB signaling. Intriguingly, the inhibitory capacity of GALNT4 on ASK1 activation is independent of its glycosyltransferase activity. CONCLUSIONS: GALNT4 represents a promising therapeutic target for liver I/R injury and improves liver surgery prognosis by inactivating the ASK1-JNK/p38 signaling pathway.


Subject(s)
Liver , MAP Kinase Kinase Kinase 5 , N-Acetylgalactosaminyltransferases , Reperfusion Injury , Animals , Apoptosis , Liver/pathology , MAP Kinase Kinase Kinase 5/metabolism , Mice , N-Acetylgalactosaminyltransferases/genetics , Protein Multimerization , Reperfusion Injury/genetics , Reperfusion Injury/prevention & control , Polypeptide N-acetylgalactosaminyltransferase
9.
Hepatology ; 75(2): 403-418, 2022 02.
Article in English | MEDLINE | ID: mdl-34435375

ABSTRACT

BACKGROUND AND AIMS: Although the prevalence of NAFLD has risen dramatically to 25% of the adult population worldwide, there are as yet no approved pharmacological interventions for the disease because of uncertainty about the underlying molecular mechanisms. It is known that mitochondrial dysfunction is an important factor in the development of NAFLD. Mitochondrial antiviral signaling protein (MAVS) is a critical signaling adaptor for host defenses against viral infection. However, the role of MAVS in mitochondrial metabolism during NAFLD progression remains largely unknown. APPROACH AND RESULTS: Based on expression analysis, we identified a marked down-regulation of MAVS in hepatocytes during NAFLD progression. By using MAVS global knockout and hepatocyte-specific MAVS knockout mice, we found that MAVS is protective against diet-induced NAFLD. MAVS deficiency induces extensive mitochondrial dysfunction during NAFLD pathogenesis, which was confirmed as impaired mitochondrial respiratory capacity and membrane potential. Metabolomics data also showed the extensive metabolic disorders after MAVS deletion. Mechanistically, MAVS interacts with the N-terminal stretch of voltage-dependent anion channel 2 (VDAC2), which is required for the ability of MAVS to influence mitochondrial function and hepatic steatosis. CONCLUSIONS: In hepatocytes, MAVS plays an important role in protecting against NAFLD by helping to regulate healthy mitochondrial function. These findings provide insights regarding the metabolic importance of conventional immune regulators and support the possibility that targeting MAVS may represent an avenue for treating NAFLD.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/physiopathology , Animals , Cells, Cultured , Disease Progression , Down-Regulation , Gene Knockdown Techniques , Hepatic Stellate Cells , Hepatocytes , Homeostasis , Humans , Lipogenesis/genetics , Male , Metabolomics , Mice , Mice, Knockout , Mitochondria/physiology , Non-alcoholic Fatty Liver Disease/genetics , Primary Cell Culture , Voltage-Dependent Anion Channel 2/genetics , Voltage-Dependent Anion Channel 2/metabolism
10.
Sci Transl Med ; 13(624): eabg8117, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34910546

ABSTRACT

Lipotoxicity is a recognized pathological trigger and accelerator of nonalcoholic steatohepatitis (NASH). However, the molecular basis of lipotoxicity-induced NASH remains elusive. Here, we systematically mapped the changes in hepatic transcriptomic landscapes in response to lipotoxic insults across multiple species. Conserved and robust activation of the arachidonic acid pathway, in particular the arachidonate 12-lipoxygenase (ALOX12) gene, was closely correlated with NASH severity in humans, macaques with spontaneously developed NASH, as well as swine and mouse dietary NASH models. Using gain- and loss-of-function studies, we found that ALOX12 markedly exacerbated NASH in both mice and Bama pig models. ALOX12 was shown to induce NASH by directly targeting acetyl-CoA carboxylase 1 (ACC1) via a lysosomal degradation mechanism. Overall, our findings reveal a key molecular driver of NASH pathogenesis and suggest that ALOX12-ACC1 interaction may be a therapeutic target in NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Disease Models, Animal , Liver/metabolism , Liver Cirrhosis/pathology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Swine
11.
Hepatology ; 74(5): 2508-2525, 2021 11.
Article in English | MEDLINE | ID: mdl-34231239

ABSTRACT

BACKGROUND AND AIMS: NAFLD is the most prevalent chronic liver disease without any Food and Drug Administration-approved pharmacological intervention in clinic. Fatty acid synthase (FASN) is one of the most attractive targets for NAFLD treatment because of its robust rate-limiting capacity to control hepatic de novo lipogenesis. However, the regulatory mechanisms of FASN in NAFLD and potential therapeutic strategies targeting FASN remain largely unknown. METHODS AND RESULTS: Through a systematic interactomics analysis of FASN-complex proteins, we screened and identified sorting nexin 8 (SNX8) as a binding partner of FASN. SNX8 directly bound to FASN and promoted FASN ubiquitination and subsequent proteasomal degradation. We further demonstrated that SNX8 mediated FASN protein degradation by recruiting the E3 ligase tripartite motif containing 28 (TRIM28) and enhancing the TRIM28-FASN interaction. Notably, Snx8 interference in hepatocytes significantly deteriorated lipid accumulation in vitro, whereas SNX8 overexpression markedly blocked hepatocyte lipid deposition. Furthermore, the aggravating effect of Snx8 deletion on NAFLD was validated in vivo as hepatic steatosis and lipogenic pathways in the liver were significantly exacerbated in Snx8-knockout mice compared to wild-type controls. Consistently, hepatocyte-specific overexpression of Snx8 in vivo markedly suppressed high-fat, high-cholesterol diet (HFHC)-induced hepatic steatosis. Notably, the protective effect of SNX8 against NAFLD was largely dependent on FASN suppression. CONCLUSIONS: These data indicate that SNX8 is a key suppressor of NAFLD that promotes FASN proteasomal degradation. Targeting the SNX8-FASN axis is a promising strategy for NAFLD prevention and treatment.


Subject(s)
Fatty Acid Synthase, Type I/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction/genetics , Sorting Nexins/metabolism , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acid Synthase, Type I/antagonists & inhibitors , Fatty Acid Synthase, Type I/genetics , Gene Knockout Techniques , HEK293 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Lipogenesis/drug effects , Lipogenesis/genetics , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Proteasome Endopeptidase Complex/metabolism , Signal Transduction/drug effects , Sorting Nexins/genetics , Transfection , Ubiquitination/genetics , Ubiquitins/metabolism
12.
Hepatology ; 74(6): 3018-3036, 2021 12.
Article in English | MEDLINE | ID: mdl-34272738

ABSTRACT

BACKGROUND AND AIMS: NAFLD is the most prevalent chronic liver disease worldwide, but no effective pharmacological therapeutics are available for clinical use. NASH is the more severe stage of NAFLD. During this progress, dysregulation of endoplasmic reticulum (ER)-related pathways and proteins is one of the predominant hallmarks. We aimed to reveal the role of ring finger protein 5 (RNF5), an ER-localized E3 ubiquitin-protein ligase, in NASH and to explore its underlying mechanism. APPROACH AND RESULTS: We first inspected the expression level of RNF5 and found that it was markedly decreased in livers with NASH in multiple species including humans. We then introduced adenoviruses for Rnf5 overexpression or knockdown into primary mouse hepatocytes and found that palmitic acid/oleic acid (PAOA)-induced lipid accumulation and inflammation in hepatocytes were markedly attenuated by Rnf5 overexpression but exacerbated by Rnf5 gene silencing. Hepatocyte-specific Rnf5 knockout significantly exacerbated hepatic steatosis, inflammatory response, and fibrosis in mice challenged with diet-induced NASH. Mechanistically, we identified 3-hydroxy-3-methylglutaryl CoA reductase degradation protein 1 (HRD1) as a binding partner of RNF5 by systematic interactomics analysis. RNF5 directly bound to HRD1 and promoted its lysine 48 (K48)-linked and K33-linked ubiquitination and subsequent proteasomal degradation. Furthermore, Hrd1 overexpression significantly exacerbated PAOA-induced lipid accumulation and inflammation, and short hairpin RNA-mediated Hrd1 knockdown exerted the opposite effects. Notably, Hrd1 knockdown significantly diminished PAOA-induced lipid deposition, and up-regulation of related genes resulted from Rnf5 ablation in hepatocytes. CONCLUSIONS: These data indicate that RNF5 inhibits NASH progression by targeting HRD1 in the ubiquitin-mediated proteasomal pathway. Targeting the RNF5-HRD1 axis may provide insights into the pathogenesis of NASH and pave the way for developing strategies for NASH prevention and treatment.


Subject(s)
DNA-Binding Proteins/metabolism , Membrane Proteins/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Ubiquitin-Protein Ligases/metabolism , Animals , Biopsy , DNA-Binding Proteins/analysis , Diet, High-Fat/adverse effects , Disease Models, Animal , Down-Regulation , Female , Gene Knockdown Techniques , HEK293 Cells , Hepatocytes , Humans , Liver/pathology , Male , Membrane Proteins/analysis , Mice , Primary Cell Culture , Protein Interaction Mapping , Proteolysis , RNA-Seq , Ubiquitin-Protein Ligases/analysis , Ubiquitin-Protein Ligases/genetics , Ubiquitination
13.
Hepatology ; 74(4): 2133-2153, 2021 10.
Article in English | MEDLINE | ID: mdl-34133792

ABSTRACT

BACKGROUND AND AIMS: Hepatic ischemia/reperfusion (I/R) injury, a common clinical problem that occurs during liver surgical procedures, causes a large proportion of early graft failure and organ rejection cases. The identification of key regulators of hepatic I/R injury may provide potential strategies to clinically improve the prognosis of liver surgery. Here, we aimed to identify the role of tumor necrosis factor alpha-induced protein 3-interacting protein 3 (TNIP3) in hepatic I/R injury and further reveal its immanent mechanisms. APPROACH AND RESULTS: In the present study, we found that hepatocyte TNIP3 was markedly up-regulated in livers of both persons and mice subjected to I/R surgery. Hepatocyte-specific Tnip3 overexpression effectively attenuated I/R-induced liver necrosis and inflammation, but improved cell proliferation in mice, whereas TNIP3 ablation largely aggravated liver injury. This inhibitory effect of TNIP3 on hepatic I/R injury was found to be dependent on significant activation of the Hippo-YAP signaling pathway. Mechanistically, TNIP3 was found to directly interact with large tumor suppressor 2 (LATS2) and promote neuronal precursor cell-expressed developmentally down-regulated 4-mediated LATS2 ubiquitination, leading to decreased Yes-associated protein (YAP) phosphorylation at serine 112 and the activated transcription of factors downstream of YAP. Notably, adeno-associated virus delivered TNIP3 expression in the liver substantially blocked I/R injury in mice. CONCLUSIONS: TNIP3 is a regulator of hepatic I/R injury that alleviates cell death and inflammation by assisting ubiquitination and degradation of LATS2 and the resultant YAP activation.TNIP3 represents a promising therapeutic target for hepatic I/R injury to improve the prognosis of liver surgery.


Subject(s)
Hippo Signaling Pathway/physiology , Liver Diseases , Protein Serine-Threonine Kinases/metabolism , Reperfusion Injury , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Suppressor Proteins/metabolism , YAP-Signaling Proteins/metabolism , Animals , Cell Proliferation , Drug Discovery , Hepatocytes/physiology , Humans , Inflammation/metabolism , Liver Diseases/metabolism , Liver Diseases/prevention & control , Mice , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Up-Regulation
14.
Cell Metab ; 33(8): 1640-1654.e8, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34107313

ABSTRACT

Obesity is characterized by the excessive accumulation of the white adipose tissue (WAT), but healthy expansion of WAT via adipocyte hyperplasia can offset the negative metabolic effects of obesity. Thus, identification of novel adipogenesis regulators that promote hyperplasia may lead to effective therapies for obesity-induced metabolic disorders. Using transcriptomic approaches, we identified transmembrane BAX inhibitor motif-containing 1 (TMBIM1) as an inhibitor of adipogenesis. Gain or loss of function of TMBIM1 in preadipocytes inhibited or promoted adipogenesis, respectively. In vivo, in response to caloric excess, adipocyte precursor (AP)-specific Tmbim1 knockout (KO) mice displayed WAT hyperplasia and improved systemic metabolic health, while overexpression of Tmbim1 in transgenic mice showed the opposite effects. Moreover, mature adipocyte-specific Tmbim1 KO did not affect WAT cellularity or nutrient homeostasis. Mechanistically, TMBIM1 binds to and promotes the autoubiquitination and degradation of NEDD4, which is an E3 ligase that stabilizes PPARγ. Our data show that TMBIM1 is a potent repressor of adipogenesis and a potential therapeutic target for obesity-related metabolic disease.


Subject(s)
Adipogenesis , Metabolic Diseases , Adipocytes, White/metabolism , Adipose Tissue, White/metabolism , Animals , Hyperplasia/metabolism , Membrane Proteins , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins , Obesity/metabolism
15.
Hepatology ; 74(3): 1319-1338, 2021 09.
Article in English | MEDLINE | ID: mdl-33894019

ABSTRACT

BACKGROUND AND AIMS: NAFLD has become the most common liver disease worldwide but lacks a well-established pharmacological therapy. Here, we aimed to investigate the role of an E3 ligase SH3 domain-containing ring finger 2 (SH3RF2) in NAFLD and to further explore the underlying mechanisms. METHODS AND RESULTS: In this study, we found that SH3RF2 was suppressed in the setting of NAFLD across mice, monkeys, and clinical individuals. Based on a genetic interruption model, we further demonstrated that hepatocyte SH3RF2 deficiency markedly deteriorates lipid accumulation in cultured hepatocytes and diet-induced NAFLD mice. Mechanistically, SH3RF2 directly binds to ATP citrate lyase, the primary enzyme promoting cytosolic acetyl-coenzyme A production, and promotes its K48-linked ubiquitination-dependent degradation. Consistently, acetyl-coenzyme A was significantly accumulated in Sh3rf2-knockout hepatocytes and livers compared with wild-type controls, leading to enhanced de novo lipogenesis, cholesterol production, and resultant lipid deposition. CONCLUSION: SH3RF2 depletion in hepatocytes is a critical aggravator for NAFLD progression and therefore represents a promising therapeutic target for related liver diseases.


Subject(s)
Carrier Proteins/genetics , Hepatocytes/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Oncogene Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Cholesterol/metabolism , Hepatocytes/pathology , Humans , Lipogenesis/genetics , Liver/pathology , Macaca fascicularis , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism
16.
J Mol Cell Cardiol ; 151: 31-43, 2021 02.
Article in English | MEDLINE | ID: mdl-32971071

ABSTRACT

Pathological cardiac hypertrophy is a crucial cause of cardiac morbidity and mortality worldwide. However, the molecular mechanisms of this disease remain incompletely understood. As a member of E3 ubiquitin ligases, F-box/WD repeat-containing protein 5 (FBXW5) has been implicated in various pathophysiological processes. However, the role of FBXW5 in pathological cardiac hypertrophy remains largely unknown. In this study, decreased expression of FBXW5 was observed in both neonatal rat cardiomyocytes and mouse hearts with hypertrophic remodeling. Gain- and loss-of-function experiments were performed to study the potential function of FBXW5 in pathological cardiac hypertrophy. The in vitro results showed that FBXW5 had a protective effect against cardiac hypertrophy induced by phenylephrine (PE). FBXW5 knockout mice and mice with AAV9-mediated FBXW5 overexpression were generated. Consistent with the in vitro results, FBXW5 deficiency aggravated cardiac hypertrophy induced by pressure overload. FBXW5 overexpression protected mice from hypertrophic stimuli. Remarkably, FBXW5 ameliorated pathological cardiac hypertrophy by directly interacting with the protein transforming growth factor-beta-activated kinase 1 (TAK1) and blocking the mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, inhibition of TAK1 prevented the effects of FBXW5 on agonist- or pressure overload-induced cardiac hypertrophy. These findings imply that FBXW5 is an essential negative regulator and may be a potential therapeutic target for pathological cardiac hypertrophy.


Subject(s)
Cardiomegaly/metabolism , Cardiomegaly/pathology , F-Box Proteins/metabolism , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System , Animals , Animals, Newborn , Dependovirus/metabolism , Down-Regulation , Fibrosis , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Mice, Knockout , Polyubiquitin/metabolism , Protein Binding , Rats , Ubiquitination , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Biosci Rep ; 40(11)2020 11 27.
Article in English | MEDLINE | ID: mdl-32964914

ABSTRACT

AIM: The study aims to evaluate protective effects of sophoricoside (Sop) on cardiac hypertrophy. Meanwhile, the potential and significance of Sop should be broadened and it should be considered as an attractive drug for the treatment of pathological cardiac hypertrophy and heart failure. METHODS: Using the phenylephrine (PE)-induced neonatal rat cardiomyocytes (NRCMs) enlargement model, the potent protection of Sop against cardiomyocytes enlargement was evaluated. The function of Sop was validated in mice received transverse aortic coarctation (TAC) or sham surgery. At 1 week after TAC surgery, mice were treated with Sop for the following 4 weeks, the hearts were harvested after echocardiography examination. RESULTS: Our study revealed that Sop significantly mitigated TAC-induced heart dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis. Mechanistically, Sop treatment induced a remarkable activation of AMPK/mTORC1-autophagy cascade following sustained hypertrophic stimulation. Importantly, the protective effect of Sop was largely abolished by the AMPKα inhibitor Compound C, suggesting an AMPK activation-dependent manner of Sop function on suppressing pathological cardiac hypertrophy. CONCLUSION: Sop ameliorates cardiac hypertrophy by activating AMPK/mTORC1-mediated autophagy. Hence, Sop might be an attractive candidate for the treatment of pathological cardiac hypertrophy and heart failure.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/drug effects , Benzopyrans/pharmacology , Cardiomegaly/prevention & control , Enzyme Activators/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , Myocytes, Cardiac/drug effects , Animals , Cardiomegaly/enzymology , Cardiomegaly/pathology , Cell Size/drug effects , Cells, Cultured , Disease Models, Animal , Enzyme Activation , Fibrosis , Male , Mice , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Rats, Sprague-Dawley , Signal Transduction
18.
Hypertension ; 76(3): 827-838, 2020 09.
Article in English | MEDLINE | ID: mdl-32683902

ABSTRACT

NOX5 (NADPH oxidase 5) is a homolog of the gp91phox subunit of the phagocyte NOX, which generates reactive oxygen species. NOX5 is involved in sperm motility and vascular contraction and has been implicated in diabetic nephropathy, atherosclerosis, and stroke. The function of NOX5 in the cardiac hypertrophy is unknown. Because NOX5 is a Ca2+-sensitive, procontractile NOX isoform, we questioned whether it plays a role in cardiac hypertrophy. Studies were performed in (1) cardiac tissue from patients undergoing heart transplant for cardiomyopathy and heart failure, (2) NOX5-expressing rat cardiomyocytes, and (3) mice expressing human NOX5 in a cardiomyocyte-specific manner. Cardiac hypertrophy was induced in mice by transverse aorta coarctation and Ang II (angiotensin II) infusion. NOX5 expression was increased in human failing hearts. Rat cardiomyocytes infected with adenoviral vector encoding human NOX5 cDNA exhibited elevated reactive oxygen species levels with significant enlargement and associated increased expression of ANP (atrial natriuretic peptides) and ß-MHC (ß-myosin heavy chain) and prohypertrophic genes (Nppa, Nppb, and Myh7) under Ang II stimulation. These effects were reduced by N-acetylcysteine and diltiazem. Pressure overload and Ang II infusion induced left ventricular hypertrophy, interstitial fibrosis, and contractile dysfunction, responses that were exaggerated in cardiac-specific NOX5 trangenic mice. These phenomena were associated with increased reactive oxygen species levels and activation of redox-sensitive MAPK (mitogen-activated protein kinase). N-acetylcysteine treatment reduced cardiac oxidative stress and attenuated cardiac hypertrophy in NOX5 trangenic. Our study defines Ca2+-regulated NOX5 as an important NOX isoform involved in oxidative stress- and MAPK-mediated cardiac hypertrophy and contractile dysfunction.


Subject(s)
Acetylcysteine/pharmacology , Cardiomegaly , Mitogen-Activated Protein Kinase Kinases/metabolism , NADPH Oxidase 5/metabolism , Reactive Oxygen Species/metabolism , Angiotensin II/pharmacology , Animals , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Free Radical Scavengers/pharmacology , Gene Expression Regulation/drug effects , Humans , Isoenzymes/metabolism , Mice , Mice, Transgenic , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Phagocytes/enzymology , Rats , Signal Transduction/drug effects , Vasoconstrictor Agents/pharmacology , Ventricular Myosins/metabolism
19.
PLoS Comput Biol ; 16(4): e1007819, 2020 04.
Article in English | MEDLINE | ID: mdl-32287273

ABSTRACT

Historically, the majority of statistical association methods have been designed assuming availability of SNP-level information. However, modern genetic and sequencing data present new challenges to access and sharing of genotype-phenotype datasets, including cost of management, difficulties in consolidation of records across research groups, etc. These issues make methods based on SNP-level summary statistics particularly appealing. The most common form of combining statistics is a sum of SNP-level squared scores, possibly weighted, as in burden tests for rare variants. The overall significance of the resulting statistic is evaluated using its distribution under the null hypothesis. Here, we demonstrate that this basic approach can be substantially improved by decorrelating scores prior to their addition, resulting in remarkable power gains in situations that are most commonly encountered in practice; namely, under heterogeneity of effect sizes and diversity between pairwise LD. In these situations, the power of the traditional test, based on the added squared scores, quickly reaches a ceiling, as the number of variants increases. Thus, the traditional approach does not benefit from information potentially contained in any additional SNPs, while our decorrelation by orthogonal transformation (DOT) method yields steady gain in power. We present theoretical and computational analyses of both approaches, and reveal causes behind sometimes dramatic difference in their respective powers. We showcase DOT by analyzing breast cancer and cleft lip data, in which our method strengthened levels of previously reported associations and implied the possibility of multiple new alleles that jointly confer disease risk.


Subject(s)
Computational Biology/methods , Genome-Wide Association Study/methods , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Breast Neoplasms/genetics , Cleft Lip/genetics , Female , Genetic Markers/genetics , Genetic Predisposition to Disease/genetics , Humans , Models, Statistical
20.
Front Genet ; 10: 1051, 2019.
Article in English | MEDLINE | ID: mdl-31824555

ABSTRACT

We approach the problem of combining top-ranking association statistics or P-values from a new perspective which leads to a remarkably simple and powerful method. Statistical methods, such as the rank truncated product (RTP), have been developed for combining top-ranking associations, and this general strategy proved to be useful in applications for detecting combined effects of multiple disease components. To increase power, these methods aggregate signals across top ranking single nucleotide polymorphisms (SNPs), while adjusting for their total number assessed in a study. Analytic expressions for combined top statistics or P-values tend to be unwieldy, which complicates interpretation and practical implementation and hinders further developments. Here, we propose the augmented rank truncation (ART) method that retains main characteristics of the RTP but is substantially simpler to implement. ART leads to an efficient form of the adaptive algorithm, an approach where the number of top ranking SNPs is varied to optimize power. We illustrate our methods by strengthening previously reported associations of µ-opioid receptor variants with sensitivity to pain.

SELECTION OF CITATIONS
SEARCH DETAIL
...