Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Front Microbiol ; 15: 1387720, 2024.
Article in English | MEDLINE | ID: mdl-38765676

ABSTRACT

Introduction: The characteristic of human immunodeficiency virus type 1 (HIV-1) is its susceptibility to erroneous replication and recombination, which plays a crucial role in the diverse and dynamic variation of HIV-1. The spread of different subtypes in the same population often leads to the emergence of circulating recombination forms (CRFs). At present, the main recombinant subtypes of HIV-1 in China are CRF07_BC, CRF01_AE, CRF08_BC and B' subtypes, while CRF55_01B has become the fifth major epidemic strain in China after rapid growth in recent years since it was first reported in 2013. In this study, we obtained five nearly full-length genomes (NFLGs) and one half-length genome from five different cities in Guangdong. Here, we focused on analyzing their characteristics, parental origin and drug resistance. Methods: Plasma samples were collected from six HIV-1 infected patients in Guangdong Province who had no epidemiological association with each other. The NFLGs of HIV-1 were amplified in two overlapping segments by the near-terminal dilution method. The positive products were sequenced directly to obtain genomic sequences. The recombinant patterns and breakpoints of the NFLGs were determined using the Simplot software and confirmed by the maximum likelihood trees for segments using the IQ-TREE and BEAST software. The genotypic resistance profiles of the protease reverse transcriptase and integrase were resolved by the Stanford HIV drug resistance database. Results: The six genomes shared highly similar recombinant pattern, with the CRF55_01B backbone substituted by CRF07_BC segments, therefore assigned as CRF156_0755. The evolutionary analysis of the segments showed that CRF07_BC segments were not clustered with the Chinese MSM variants in the CRF07_BC lineage. All the five NFLGs were identified with the non-nucleoside reverse-transcription inhibitors (NNRTIs) resistance mutation V179E. Discussion: With the accumulation and evolution of recombination between CRF55_01B and CRF 07_BC, the prevalence of more recombinant strains of CRF55_01B and CRF 07_BC may occur. Therefore, it is necessary to strengthen the identification and monitoring of the recombination of CRF55_01B and CRF 07_BC.

2.
Arch Virol ; 169(5): 92, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587697

ABSTRACT

The genetic recombination patterns and genetic distribution of HIV-1 are valuable for elucidating the epidemic and genetic diversity of HIV. Numerous HIV-1 circulating recombinant forms (CRFs) have recently emerged and disseminated rapidly. In China, at least 32 CRFs have been reported to account for more than 80% of all HIV infections. However, CRFs derived from the CRF07_BC and CRF55_01B lineages have never been recorded. Here, a novel third-generation CRF involving HIV-1 was identified in four HIV-1-infected patients in Guangdong, China, who had no epidemiological association with each other. Phylogenetic and recombinant analyses confirmed that these strains shared highly similar recombination patterns, with the CRF07_BC backbone substituted by a CRF55_01B segment; therefore, these strains were classified as CRF126_0755. This is the first study of a CRF derived from CRF07_BC and CRF55_01B. Bayesian phylogenetic inference suggested that CRF126_0755 originated in approximately 2005-2007. The present findings reveal that the genotype composition of HIV-1 has become more complex than that of other viruses and highlight the urgent need for continuous molecular screening and epidemic surveillance within HIV-1-infected populations to advance our understanding of viral transmission mechanisms.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV Infections/epidemiology , HIV-1/genetics , Bayes Theorem , Phylogeny , China/epidemiology
3.
Infect Genet Evol ; 118: 105555, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242185

ABSTRACT

OBJECTIVE: To obtain and investigate the genetic characteristics of four HIV-1 near full-length genome sequences (NFLGs), aiming at a description of a novel circulating recombinant form (CRF) in Guangdong China. METHODS: Plasma samples were collected from HIV-1 infected MSM patients in Guangdong Province who had no epidemiological association with each other. The NFLGs were amplified with two overlapping halves and phylogenetic analyses were performed using Mega V11.0.1. Recombination analyses were comprehensively screened with the jpHMM, RIP, and BootScan analyses. Finally, the Bayesian phylogenetic analyses were performed using Beast V1.10.4 to estimate the origin time. RESULTS: Phylogenetic analyses revealed the four NFLGs formed a distinct monophyletic cluster distinguished from other known subtypes in the Neighbor-joining tree. Recombinant analyses revealed they shared a highly similar recombinant pattern, with the CRF07_BC backbone substituted by three subtype B segments. Subregion phylogenetic analyses confirmed them to be a novel CRF composed of CRF07_BC and subtype B, therefore, designed as CRF128_07B. According to the Bayesian phylogenetic analyses, CRF128_07B was inferred to approximately originated around 2005-2006. CONCLUSIONS: These findings described a novel HIV-1 CRF identified from MSM in Guangdong Province. This is the first detection of a CRF comprising CRF07_BC and subtype B. The present finding highlights the urgent need for continuous molecular screening and the epidemic surveillance within the MSM populations.


Subject(s)
Epidemics , HIV Seropositivity , HIV-1 , Humans , Bayes Theorem , HIV-1/genetics , Phylogeny , China/epidemiology
4.
J Mol Model ; 30(2): 44, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240929

ABSTRACT

CONTEXT: To explore the impact of OGs (OGs) on formaldehyde (HCHO) adsorption by modified activated carbon, this paper studied the influence of OGs on HCHO adsorption characteristics, varying the groups including ester, carboxyl, and hydroxyl. Employing density functional theory (DFT), the effects of various OGs on the structure of N-doped activated carbon through GGA-PBE exchange-correlation functionals by Materials Studio combined with Gaussian software. The types of weak interactions during the adsorption process were calculated by RDG, elucidating the mechanism through which the three OGs affect HCHO adsorption on N-doped activated carbon. The dynamic adsorption process of HCHO was simulated by molecular dynamics (MD). The influence and proportion of OGs on HCHO adsorption were subsequently analyzed using van der Waals and electrostatic interactions, determining differences in formaldehyde adsorption effects across OG types. The carboxyl group exhibits the most robust synergistic adsorption effect on the modified activated carbon. There is a notable alteration in the position and distribution of electrostatic potential extremes observed following carboxyl modification. The calculation results show that the adsorption energy of hydroxyl groups on modified activated carbon is the highest, at -5.07 kcal/mol, with a transfer charge of 0.014 e. Following the introduction of carboxyl groups, the proportion of electrostatic interactions escalated from the initial 24% to 38%. This study will provide new ideas for guiding the design of activated carbon for efficient adsorption of formaldehyde. METHODS: The modified activated carbon fragments of three OGs were constructed by Materials Studio and Gaussian software, and the surface electrostatic potential polarity and area distribution, charge change, adsorption energy, and transferred charge of each molecular fragment were calculated. Moreover, cell models of OGs with the same dimensions were constructed to simulate the adsorption amount, heat of adsorption, interaction energy, radial distribution function, and hydrogen-bonding interactions for methane at room temperature and pressure. The results were consistent with the DFT simulations.

5.
Virol J ; 20(1): 277, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017515

ABSTRACT

BACKGROUND: In a randomized trial, Lianhuaqingwen (LHQW) capsule was effective for accelerating symptom recovery among patients with coronavirus disease 2019 (COVID-19). However, the lack of blinding and limited sample sizes decreased the level of clinical evidence. OBJECTIVES: To evaluate the efficacy and safety of LHQW capsule in adults with mild-to-moderate COVID-19. METHODS: We conducted a double-blind randomized controlled trial in adults with mild-to-moderate COVID-19 (17 sites from China, Thailand, Philippine and Vietnam). Patients received standard-of-care alone or plus LHQW capsules (4 capsules, thrice daily) for 14 days. The primary endpoint was the median time to sustained clinical improvement or resolution of nine major symptoms. RESULTS: The full-analysis set consisted of 410 patients in LHQW capsules and 405 in placebo group. LHQW significantly shortened the primary endpoint in the full-analysis set (4.0 vs. 6.7 days, hazards ratio: 1.63, 95% confidence interval: 1.39-1.90). LHQW capsules shortened the median time to sustained clinical improvement or resolution of stuffy or runny nose (2.8 vs. 3.7 days), sore throat (2.0 vs. 2.6 days), cough (3.2 vs. 4.9 days), feeling hot or feverish (1.0 vs. 1.3 days), low energy or tiredness (1.3 vs. 1.9 days), and myalgia (1.5 vs. 2.0 days). The duration to sustained clinical improvement or resolution of shortness of breath, headache, and chills or shivering did not differ significantly between the two groups. Safety was comparable between the two groups. No serious adverse events were reported. INTERPRETATION: LHQW capsules promote recovery of mild-to-moderate COVID-19 via accelerating symptom resolution and were well tolerated. Trial registration ChiCTR2200056727 .


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Adult , Humans , Double-Blind Method , Drugs, Chinese Herbal/therapeutic use , Treatment Outcome
6.
Nat Commun ; 14(1): 7393, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968364

ABSTRACT

The underlying mechanism of chronic hepatitis B virus (HBV) functional cure by interferon (IFN), especially in patients with low HBsAg and/or young ages, is still unresolved due to the lack of surrogate models. Here, we generate a type I interferon receptor humanized mouse (huIFNAR mouse) through a CRISPR/Cas9-based knock-in strategy. Then, we demonstrate that human IFN stimulates gene expression profiles in huIFNAR peripheral blood mononuclear cells (PBMCs) are similar to those in human PBMCs, supporting the representativeness of this mouse model for functionally analyzing human IFN in vivo. Next, we reveal the tissue-specific gene expression atlas across multiple organs in response to human IFN treatment; this pattern has not been reported in healthy humans in vivo. Finally, by using the AAV-HBV model, we test the antiviral effects of human interferon. Fifteen weeks of human PEG-IFNα2 treatment significantly reduces HBsAg and HBeAg and even achieves HBsAg seroconversion. We observe that activation of intrahepatic monocytes and effector memory CD8 T cells by human interferon may be critical for HBsAg suppression. Our huIFNAR mouse can authentically respond to human interferon stimulation, providing a platform to study interferon function in vivo. PEG-IFNα2 treatment successfully suppresses intrahepatic HBV replication and achieves HBsAg seroconversion.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , Mice , Animals , Hepatitis B virus/physiology , Hepatitis B Surface Antigens , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Interferon-alpha/pharmacology , Interferon-alpha/therapeutic use , Leukocytes, Mononuclear/metabolism , Recombinant Proteins/pharmacology , Polyethylene Glycols/pharmacology , DNA, Viral , Treatment Outcome
7.
Dalton Trans ; 52(47): 18000-18009, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37982693

ABSTRACT

Transition metal-based oxides have been reported as an important family of electrocatalysts for water splitting owing to their possible large-scale applications that are highly desirable for the hydrogen generation industry. Herein, we report a facile method for the preparation of phosphate-decorated NiFe oxides on nickel foam as efficient oxygen evolution reaction (OER) electrocatalysts for water oxidation. The OER electrocatalysts were developed through the pyrolysis of MIL(Fe) metal-organic frameworks (MOFs), which were modified with Ni and P species. It was found that the formation of NiO on the Fe2O3 surface (NiO@Fe2O3) can enrich electrocatalytic active sites for the OER. Meanwhile, the incorporation of P into NiO@Fe2O3 (Px-NiO@Fe2O3) creates abundant oxygen vacancies, which facilitates the surface charge transfer for OER electrocatalysis. Benefiting from the structure and composition advantages, P2.0-NiO@Fe2O3/NF exhibits the best performance for OER electrocatalysis among other prepared electrocatalysts, with an overpotential of 208 mV at the OER current density of 10 mA cm-2 and a small Tafel slope of 69.64 mV dec-1 in 1 M KOH solution. Additionally, P2.0-NiO@Fe2O3/NF shows an outstanding durability for the OER electrocatalysis, maintaining the OER current density above 20 mA cm-2 for more than 100 h.

8.
Can J Infect Dis Med Microbiol ; 2023: 7253779, 2023.
Article in English | MEDLINE | ID: mdl-37849973

ABSTRACT

Background: SARS-CoV-2 induces apoptosis and amplifies the immune response by continuously stressing the endoplasmic reticulum (ER) after invading cells. This study aimed to establish a protein-metabolic pathway associated with ER dysfunction based on the invasion mechanism of SARS-CoV-2. Methods: This study included 17 healthy people and 46 COVID-19 patients, including 38 mild patients and 8 severe patients. Proteomics and metabolomics were measured in the patient plasma collected at admission and one week after admission. The patients were further divided into the aggravation and remission groups based on disease progression within one week of admission. Results: Cross-sectional comparison showed that endoplasmic reticulum molecular chaperone-binding immunoglobulin protein (ERC-BiP), angiotensinogen (AGT), ceramide acid (Cer), and C-reactive protein (CRP) levels were significantly increased in COVID-19 patients, while the sphingomyelin (SM) level was significantly decreased (P < 0.05). In addition, longitudinal comparative analysis found that the temporal fold changes of ERC-BiP, AGT, Cer, CRP, and SM were significantly different between the patients in the aggravation and remission groups (P < 0.05). ERC-BiP, AGT, and Cer levels were significantly increased in aggravation patients, while SM was significantly decreased (P < 0.05). Meanwhile, ERC-BiP was significantly correlated with AGT (r = 0.439; P < 0.001). Conclusions: ERC-BiP can be used as a core index to reflect the degree of ER stress in COVID-19 patients, which is of great value for evaluating the functional state of cells. A functional pathway for AGT/ERC-BiP/glycolysis can directly assess the activation of unfolded protein reactions. The ERC-BiP pathway is closer to the intracellular replication pathway of SARS-CoV-2 and may help in the development of predictive protocols for COVID-19 exacerbation.

9.
Chin Med J (Engl) ; 136(22): 2686-2693, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37881959

ABSTRACT

BACKGROUND: Hepatitis B surface antigen (HBsAg) clearance is vital for a functional cure of hepatitis B virus (HBV) infection. However, the incidence and predictors of HBsAg seroclearance in patients co-infected with HBV and human immunodeficiency virus (HIV) remain largely unknown in Guangdong, China. METHODS: Between 2009 and 2019, patients co-infected with HBV/HIV undergoing antiretroviral therapy (ART) in Guangzhou Eighth People's Hospital affiliated to Guangzhou Medical University were retrospectively reviewed with the endpoint on December 31, 2020. The incidence and risk factors for HBsAg seroclearance were evaluated using Kaplan-Meier and multivariate Cox regression analyses. RESULTS: A total of 1550 HBV/HIV co-infected patients were included in the study, with the median age of 42 years and 86.0% (1333/1550) males. Further, 98.3% (1524/1550) received ART containing tenofovir disoproxil fumarate (TDF) plus lamivudine (3TC). HBV DNA was examined in 1283 cases at the last follow-up. Over the median 4.7 years of follow-up, 8.1% (126/1550) patients achieved HBsAg seroclearance, among whom 50.8% (64/126) obtained hepatitis B surface antibody, 28.1% (137/488) acquired hepatitis B e antigen seroconversion, and 95.9% (1231/1283) undetectable HBV DNA. Compared with patients who maintained HBsAg positive, cases achieving HBsAg seroclearance showed no differences in age, gender, CD4 + T cell count, alanine aminotransferase (ALT) level, or fibrosis status; however, they presented lower HBV DNA levels, lower HBsAg levels, and higher rates of HBV genotype B at the baseline. Multivariate analysis showed that baseline HBsAg <1500 cutoff index (COI) (adjusted hazard ratio [aHR], 2.74, 95% confidence interval [95% CI]: 1.48-5.09), ALT elevation >2 × upper limit of normal during the first six months after receiving ART (aHR, 2.96, 95% CI: 1.53-5.77), and HBV genotype B (aHR, 3.73, 95% CI: 1.46-9.59) were independent predictors for HBsAg seroclearance (all P <0.01). CONCLUSIONS: Long-term TDF-containing ART has high anti-HBV efficacy including relatively high overall HBsAg seroclearance in HBV/HIV co-infected patients. Lower baseline HBsAg levels, HBV genotype B, and elevated ALT levels during the first six months of ART are potential predictors of HBsAg seroclearance.


Subject(s)
Coinfection , HIV Infections , Hepatitis B, Chronic , Male , Humans , Adult , Hepatitis B Surface Antigens , Hepatitis B virus/genetics , HIV Infections/drug therapy , HIV , DNA, Viral , Incidence , Coinfection/drug therapy , Retrospective Studies , Tenofovir/therapeutic use , Lamivudine/therapeutic use , Hepatitis B, Chronic/drug therapy
10.
Infect Drug Resist ; 16: 4953-4964, 2023.
Article in English | MEDLINE | ID: mdl-37546367

ABSTRACT

Background: Antiretroviral therapy (ART) efficiently reduces the morbidities and mortalities caused by HIV-1 infection and prevents the HIV epidemic. However, virologic failure (VF) occurs in some patients receiving ART experience, especially increases in those patients with intermittent or persistent low-level viremia (LLV). The presence of drug resistance mutations (DRMs) in LLV was a strong predictor of subsequent VF. The data on drug resistance (DR) or DRMs for HIV-1 infections at low-level viral load (LLVL) are limited in China. Objective: To monitor the prevalence of HIV-1 drug resistance and to evaluate the risk factors associated with drug resistance in LLVL HIV-1 infections during ART in Guangdong, China. Methods: Plasma samples with LLVL during ART in Guangdong Province between Jan 2011 and Dec 2022 were subjected to a modified reverse-transcription PCR with a pre-step of virus concentration by ultracentrifugation before extraction and the Sanger sequencing. Then, the genotypic resistance test was performed and DR was analyzed by the Stanford HIVDB program. Finally, DR-associated factors were identified by logistic regression analysis. Results: We found that CRF01_AE (53.57%) and CRF07_BC (25.07%) were the dominant HIV-1 genotypes in LLVL in Guangdong between 2011 and 2022 but that the percentage of CRF01_AE showed a trend of decrease over time. M46 (1.49%), M184 (30.91%), and K103 (21.46%) were the dominant PI-, NRTI-, and NNRTI-associated mutations, respectively. The total DR rate was 47.06%. Specifically, PI (3.71%) showed a significantly lower DR rate than NNRTI (40.74%) and NRTI (34.14%). Duration of ART, initial ART regimen, ethnicity, and WHO clinical stages were associated with DR. Conclusion: The drug resistance rate among the LLVL during ART in Guangdong, China is high. The risk factors associated with HIV drug resistance should be seriously considered for better control.

11.
Lancet Reg Health West Pac ; 36: 100749, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37547041

ABSTRACT

Background: The direct-acting antiviral agents (DAAs) have revolutionized the treatment of Hepatitis C Virus (HCV) infection. However, a simple and feasible treatment strategy with high efficacy and safety for HCV in patients coinfected with Human Immunodeficiency Virus (HIV) remains an unmet medical need, especially in areas with limited health resource. This study aims to assess the efficacy and safety of 12 weeks of treatment with sofosbuvir and velpatasvir in patients with chronic HCV/HIV-1 coinfection. Methods: We conducted a multicenter, single-arm, open-label study in China, which involved chronic HCV/HIV-1 coinfected patients who are receiving an antiretroviral regimen of a combination tablet consisting of elvitegravir, cobicistat, emtricitabine, tenofovir alafenamide, (EVG/c/FTC/TAF) once daily. Patients with liver cirrhosis or experienced to DAAs treatment were excluded. All patients received combined sofosbuvir (400 mg) and velpatasvir (100 mg) tablet once daily for 12 weeks regardless of HCV genotype. The primary efficacy endpoint was sustained virologic response, defined as HCV RNA <15 IU/mL at 12 weeks after completion of treatment (SVR12). The primary safety endpoint was the proportion of patients who prematurely discontinued treatment because of adverse events. Safety and efficacy data were analyzed with an intention-to-treat (ITT) population (last observation carried forward) and per-protocol (PP) population. This trial is registered on ChiCTR.org.cn with number being ChiCTR1800020246. Findings: Of the 243 patients enrolled, 78% were male, 9% had been previously treated for HCV with interferon, and none had pre-defined cirrhosis, although 8% had Fibrosis 4 score (FIB-4) >3.25. A total of 233 patients completed 12-week post-treatment follow-up. Overall, 227/233 patients (97%) achieved SVR12: 100% (63/63) in those with HCV genotype 1, 67% (2/3) in those with genotype 2, 95% (84/88) in those with genotype 3, 99% (78/79) in those with genotype 6. Rates of SVR12 were lower among those with baseline FIB-4 >3.25 than those without (78% [14/18] vs. 99% [211/212], P < 0.001). HIV-1 suppression was not compromised. The most common adverse events were upper respiratory tract infection (5%), cough (3%), abnormal renal function (2%), abnormal liver function (2%), constipation (2%), urinary tract infection (2%) and sleep disorders (2%). No participant discontinued treatment because of adverse events or death. Interpretation: Twelve weeks of treatment with sofosbuvir/velpatasvir provide high rates of SVR and is well-tolerated in patients coinfected with HIV-1 and HCV regardless of HCV genotypes. Non-invasive liver fibrosis score may help to further distinguish patients at greater likelihood of a suboptimal response. Funding: The 13th Five Year Plan of the Ministry of Science and Technology of China for the prevention and treatment of major infectious diseases such as AIDS and viral hepatitis, the National Key Research and Development Program of China, Medical Key Discipline Program of Guangzhou-Viral Infectious Diseases (2021-2023), Basic research program on people's Livelihood Science and technology of Guangzhou, and National Natural Science Foundation of China.

12.
PLoS Negl Trop Dis ; 17(4): e0011201, 2023 04.
Article in English | MEDLINE | ID: mdl-37011093

ABSTRACT

OBJECTIVES: This study aimed to investigate the influencing factors of delayed clearance of Talaromyces marneffei (T. marneffei) in blood culture of patients with acquired immune deficiency syndrome (AIDS) complicated with talaromycosis after antifungal therapy. METHODS: The patients with AIDS complicated with talaromycosis were retrospectively enrolled, and divided into two groups according to the blood T. marneffei culture results in two weeks after antifungal therapy. The baseline clinical data were collected and the antifungal susceptibility of T. marneffei was tested. RESULTS: A total of 190 patients with AIDS and talaromycosis were enrolled, of whom 101 cases remained positive for T. marneffei (Pos-group) while the other 89 cases were negative in blood culture (Neg-group) after two weeks' antifungal treatment. The Pos-group had a higher baseline Aspartate aminotransferase (AST, 78.5 vs. 105 U/L; P = 0.073) and lower CD4+ T cells level (11 vs. 7 cells/µl; P = 0.061). The percentage of isolates with higher MICs of voriconazole (VOR) and fluconazole (FLU) in the Pos-group were significantly higher than those in the Neg-group (χ2 = 12.623, P < 0.001 and χ2 = 9.356, P = 0.002, respectively). By multivariate logistic regression, the MIC value for VOR was identified as the prognostic variable that may influence the clearance of T. marneffei in blood culture after antifungal therapy among AIDS patients with talaromycosis. CONCLUSIONS: The delayed negative conversion of blood T. marneffei-culture may be associated with some factors especially higher MIC of VOR, indicating the possibility of drug resistance of T. marneffei.


Subject(s)
Acquired Immunodeficiency Syndrome , Talaromyces , Humans , Voriconazole/therapeutic use , Antifungal Agents/therapeutic use , Blood Culture , Retrospective Studies
13.
Front Immunol ; 14: 1079960, 2023.
Article in English | MEDLINE | ID: mdl-36891316

ABSTRACT

Objective: Vaccination is effective tool for preventing and controlling SARS-CoV-2 infections, and inactivated vaccines are the most widely used type of vaccine. In order to identify antibody-binding peptide epitopes that can distinguish between individuals who have been vaccinated and those who have been infected, this study aimed to compare the immune responses of vaccinated and infected individuals. Methods: SARS-CoV-2 peptide microarrays were used to assess the differences between 44 volunteers inoculated with the inactivated virus vaccine BBIBP-CorV and 61 patients who were infected with SARS-CoV-2. Clustered heatmaps were used to identify differences between the two groups in antibody responses to peptides such as M1, N24, S15, S64, S82, S104, and S115. Receiver operating characteristic curve analysis was used to determine whether a combined diagnosis with S15, S64, and S104 could effectively distinguish infected patients from vaccinated individuals. Results: Our findings showed that the specific antibody responses against S15, S64, and S104 peptides were stronger in vaccinators than in infected persons, while responses to M1, N24, S82, and S115 were weaker in asymptomatic patients than in symptomatic patients. Additionally, two peptides (N24 and S115) were found to correlate with the levels of neutralizing antibodies. Conclusion: Our results suggest that antibody profiles specific to SARS-CoV-2 can be used to distinguish between vaccinated individuals and those who are infected. The combined diagnosis with S15, S64, and S104 was found to be more effective in distinguishing infected patients from those who have been vaccinated than the diagnosis using individual peptides. Moreover, the specific antibody responses against the N24 and S115 peptides were found to be consistent with the changing trend of neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Antibodies, Viral , Vaccination , Antibodies, Neutralizing , Peptides
14.
Virol Sin ; 38(3): 398-408, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36907331

ABSTRACT

Some HIV-infected individuals receiving ART develop low-level viremia (LLV), with a plasma viral load of 50-1000 copies/mL. Persistent low-level viremia is associated with subsequent virologic failure. The peripheral blood CD4+ T cell pool is a source of LLV. However, the intrinsic characteristics of CD4+ T cells in LLV which may contribute to low-level viremia are largely unknown. We analyzed the transcriptome profiling of peripheral blood CD4+ T cells from healthy controls (HC) and HIV-infected patients receiving ART with either virologic suppression (VS) or LLV. To identify pathways potentially responding to increasing viral loads from HC to VS and to LLV, KEGG pathways of differentially expressed genes (DEGs) were acquired by comparing VS with HC (VS-HC group) and LLV with VS (LLV-VS group), and overlapped pathways were analyzed. Characterization of DEGs in key overlapping pathways showed that CD4+ T cells in LLV expressed higher levels of Th1 signature transcription factors (TBX21), toll-like receptors (TLR-4, -6, -7 and -8), anti-HIV entry chemokines (CCL3 and CCL4), and anti-IL-1ß factors (ILRN and IL1R2) compared to VS. Our results also indicated activation of the NF-κB and TNF signaling pathways that could promote HIV-1 transcription. Finally, we evaluated the effects of 4 and 17 transcription factors that were upregulated in the VS-HC and LLV-VS groups, respectively, on HIV-1 promoter activity. Functional studies revealed that CXXC5 significantly increased, while SOX5 markedly suppressed HIV-1 transcription. In summary, we found that CD4+ T cells in LLV displayed a distinct mRNA profiling compared to that in VS, which promoted HIV-1 replication and reactivation of viral latency and may eventually contribute to virologic failure in patients with persistent LLV. CXXC5 and SOX5 may serve as targets for the development of latency-reversing agents.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , T-Lymphocytes , Viremia/drug therapy , HIV Infections/drug therapy , HIV Seropositivity/drug therapy , Viral Load , Transcription Factors/genetics , Gene Expression Profiling , CD4-Positive T-Lymphocytes , Anti-HIV Agents/pharmacology , DNA-Binding Proteins/genetics
15.
Nat Commun ; 14(1): 1058, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36828833

ABSTRACT

SARS-CoV-2 Omicron variants feature highly mutated spike proteins with extraordinary abilities in evading antibodies isolated earlier in the pandemic. Investigation of memory B cells from patients primarily with breakthrough infections with the Delta variant enables isolation of a number of neutralizing antibodies cross-reactive to heterologous variants of concern (VOCs) including Omicron variants (BA.1-BA.4). Structural studies identify altered complementarity determining region (CDR) amino acids and highly unusual heavy chain CDR2 insertions respectively in two representative cross-neutralizing antibodies-YB9-258 and YB13-292. These features are putatively introduced by somatic hypermutation and they are heavily involved in epitope recognition to broaden neutralization breadth. Previously, insertions/deletions were rarely reported for antiviral antibodies except for those induced by HIV-1 chronic infections. These data provide molecular mechanisms for cross-neutralization of heterologous SARS-CoV-2 variants by antibodies isolated from Delta variant infected patients with implications for future vaccination strategy.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus
16.
J Med Virol ; 95(1): e28219, 2023 01.
Article in English | MEDLINE | ID: mdl-36229892

ABSTRACT

Retest-positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA, as a unique phenomenon among discharged individuals, has been demonstrated to be safe in the community. Still, the underlying mechanism of viral lingering is less investigated. In this study, first, we find that the frequency of viral RNA-positive retesting differs among variants. Higher ratios of viral RNA-positive retest were more frequently observed among Delta (61.41%, 514 of 837 cases) and Omicron (39.53%, 119 of 301 cases) infections than among ancestral viral infection (7.27%, 21 of 289 cases). Second, the tissues where viral RNA reoccurred were altered. Delta RNA reoccurred mainly in the upper respiratory tract (90%), but ancestral virus RNA reoccurred mainly in the gastrointestinal tract (71%). Third, vaccination did not reduce the frequency of viral RNA-positive retests, despite high concentrations of viral-specific antibodies in the blood. Finally, 37 of 55 (67.27%) Delta-infected patients receiving neutralizing antibody therapy become viral RNA retest positive when high concentrations of neutralizing antibodies still patrol in the blood. Altogether, our findings suggest that the presentence of high titers of neutralizing antibodies in the blood is incompetent in clearing residual viral RNA in the upper respiratory tract.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , Trachea , RNA, Viral/genetics , Antibodies, Viral , Spike Glycoprotein, Coronavirus
17.
J Med Virol ; 95(1): e28223, 2023 01.
Article in English | MEDLINE | ID: mdl-36229975

ABSTRACT

Biomarkers of monocyte-macrophages activation and inflammation in plasma such as interleukin-18 (IL-18), soluble leukocyte differentiation antigen 14 (sCD14), and sCD163 are associated with disease severity and prognosis in HIV-1 infected patients, however, their relationships with efficacy of antiretroviral therapy (ART) need further investigation. We aimed to characterize and explore the clinical significance of plasma IL-18, sCD14, and sCD163 in this population. This was a retrospective cohort study consisting of HIV-1 infected patients enrolled in a randomized, controlled, open-label, noninferiority trial (ALTERLL study), with follow-up time points including initiation of ART (baseline), 12-, 24- and 48-weeks of treatment. Plasma levels of IL-18, sCD14, and sCD163 were measured using the enzyme-linked immunosorbent assay method. Viral suppression was defined as HIV-1 RNA < 20 copies/ml. Among the 193 studied patients (median age of 29.0 years, 180 males), IL-18 and sCD163 had U-shaped regression curves and sCD14 had an inverted U-shaped regression curve while the virus was decreased and immune function recovered. Patients with higher levels of IL-18 or lower levels of sCD163 at baseline were less likely to achieve viral suppression at Week 12 or Week 24 of treatment, respectively. In multivariate analysis, baseline sCD163 ≤ 500 pg/ml (adjusted odds ratio 0.33, 95% confidence interval 0.16-0.68) was independently associated with a lower rate of viral suppression at Week 24 of treatment. In conclusion, we demonstrated different dynamic changes among IL-18, sCD14, and sCD163 after ART. Baseline sCD163 level could be a potential predictor of early virological response to ART. Further validation and mechanistic research are needed.


Subject(s)
HIV Infections , HIV-1 , Male , Humans , Adult , Lipopolysaccharide Receptors , Interleukin-18 , Clinical Relevance , Retrospective Studies , Biomarkers
18.
Front Cell Infect Microbiol ; 13: 1277880, 2023.
Article in English | MEDLINE | ID: mdl-38188634

ABSTRACT

Introduction: COVID-19 continues to spread worldwide, with an increasing number of individuals experiencing reinfection after recovering from their primary infection. However, the nature and progression of this infection remain poorly understood. We aimed to investigate the immune response, severity and outcomes of Omicron BA.5 reinfection among individuals previously infected with different SARS-CoV-2 variants. Methods: We enrolled 432 COVID-19 cases who had experienced prior infection with the ancestral SARS-CoV-2 virus, Delta variant or Omicron BA.2 variant between January 2020 and May 2022 in Guangzhou, China. All cases underwent follow-up from March to April, 2023 through telephone questionnaires and clinical visits. Nasal lavage fluid and peripheral blood were collected to assess anti-RBD IgA, anti-RBD IgG and virus-specific IFN-γ secreting T cells. Results: Our study shows that 73.1%, 56.7% and 12.5% of individuals with a prior infection of the ancestral virus, Delta or Omicron BA.2 variant experienced reinfection with the BA.5 variant, respectively. Fever, cough and sore throat were the most common symptoms of BA.5 reinfection, with most improving within one week and none progressing to a critical condition. Compared with individuals without reinfection, reinfected patients with a prior Delta infection exhibited elevated levels of nasal anti-RBD IgA, serum anti-RBD IgG and IFN-γ secreting T cells, whereas there was no noticeable change in reinfected individuals with a prior BA.2 infection. Conclusion: These results suggest that BA.5 reinfection is common but severe outcomes are relatively rare. Reinfection with a novel SARS-CoV-2 variant different from the prior infection may induce a more robust immune protection, which should be taken into account during vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reinfection , Immunity , Immunoglobulin A , Immunoglobulin G
20.
iScience ; 25(11): 105465, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36338432

ABSTRACT

To overcome the increased risk of SARS-CoV-2 reinfection or post-vaccination infection caused by the Omicron variant, Omicron-specific vaccines were considered a potential strategy. We reported the increased magnitude and breadth of antibody response against VOCs elicited by post-vaccination Delta and Omicron infection, compared to WT infection without vaccination. Then, in mouse models, three doses of Omicron-RBD immunization elicited comparable neutralizing antibody (NAb) titers with three doses of WT-RBD immunization, but the neutralizing activity was not cross-active. By contrast, a heterologous Omicron-RBD booster following two doses of WT-RBD immunization increased the NAb titers against Omicron by 9-folds than the homologous WT-RBD booster. Moreover, it retains neutralization against both WT and current VOCs. Results suggest that Omicron-specific subunit booster shows its advantages in the immune protection from both WT and current VOCs and that SARS-CoV-2 vaccines including two or more virus lineages might improve the NAb response.

SELECTION OF CITATIONS
SEARCH DETAIL
...