Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 14: 1214232, 2023.
Article in English | MEDLINE | ID: mdl-37583432

ABSTRACT

Introduction: The correlation between dyslipidemia and periodontitis is revealed through epidemiological studies. However, the results are affected by several confounding factors. This study aims to elucidate the genetic causal association between circulating lipid traits and periodontitis by two-sample Mendelian randomization (MR) analysis. Methods: After the different screening processes, two cohorts of circulating lipid traits from the UK Biobank were used as exposure data, including five circulating lipid traits. The Periodontitis cohort was selected from the GeneLifestyle Interactions in Dental Endpoints (GLIDE) consortium as outcome data. In univariable MR, the inverse variance weighted (IVW) was used in conjunction with six additional analytical methods to assess causality. The Cochran Q test, IGX 2 statistic, MR-PRESSO, and MR-Egger intercept were used to quantify heterogeneity and pleiotropy. The multivariable MR-IVW (MVMR-IVW) and MVMR-robust were mainly used as analytical methods in the multiple MR analyses. Results: The IVW estimates showed that genetically predicted Apolipoprotein A1 (apo A1) [odds ratio (OR)=1.158, 95% confidence interval (CI)=1.007-1.331, P-value=0.040] was potentially associated with the risk of periodontitis, but the statistical power of the results was low. Multivariable MR analysis did not reveal any significant causal relationship between apo A1 and periodontitis (OR=0.72, 95% CI=0.36-1.41, P-value=0.34). In the validation cohort, there was also no significant causal relationship between apo A1 and periodontitis (OR=1.079, 95% CI=0.903-1.290, P-value=0.401). Meanwhile, genetically predicted Apolipoprotein B (apo B), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) (all P-values>0.05) were not significantly associated with the risk of periodontitis causal inference. Conclusion: This MR analysis was unable to provide genetic evidence for the influence of these five circulating lipid traits on periodontitis. However, a more extensive study with a more comprehensive circulating lipid profile and periodontitis data is needed due to study limitations.


Subject(s)
Apolipoprotein A-I , Periodontitis , Humans , Mendelian Randomization Analysis , Apolipoproteins B , Cholesterol, HDL , Periodontitis/epidemiology , Periodontitis/genetics
2.
ACS Biomater Sci Eng ; 9(4): 1961-1975, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36942823

ABSTRACT

Periodontal tissue regeneration is a major challenge in tissue engineering due to its regenerated environment complexity. It aims to regenerate not only the supporting alveolar bone and cementum around teeth but also the key connecting periodontal ligament. Herein, a constructed aligned porous hydrogel scaffold carrying cells based on chitosan (CHI) and oxidized chondroitin sulfate (OCS) treated with a freeze-casting technique was fabricated, which aimed to induce the arrangement of periodontal tissue regeneration. The microscopic morphology and physical and chemical properties of the hydrogel scaffold were evaluated. The biocompatibilities with periodontal ligament stem cells (PDLSCs) or gingival-derived mesenchymal stem cells (GMSCs) were verified, respectively, by Live/Dead staining and CCK8 in vitro. Furthermore, the regeneration effect of the aligned porous hydrogel scaffold combined with PDLSCs and GMSCs was evaluated in vivo. The biocompatibility experiments showed no statistical significance between the hydrogel culture group and blank control (P > 0.05). In a rat periodontal defect model, PDLSC and GMSC hydrogel experimental groups showed more pronounced bone tissue repair than the blank control (P < 0.05) in micro-CT. In addition, there was more tissue repair (P < 0.05) of PDLSC and GMSC hydrogel groups from histological staining images. Higher expressions of OPN, Runx-2, and COL-I were detected in both of the above groups via immunohistochemistry staining. More importantly, the group with the aligned porous hydrogel induced more order periodontal ligament formation than that with the ordinary hydrogel in Masson's trichrome analysis. Collectively, it is expected to promote periodontal tissue regeneration utilizing an aligned porous hydrogel scaffold combined with PDLSCs and GMSCs (CHI-OCS-PDLSC/GMSC composite), which provides an alternative possibility for clinical application.


Subject(s)
Mesenchymal Stem Cells , Periodontal Ligament , Rats , Animals , Periodontal Ligament/metabolism , Periodontal Ligament/pathology , Porosity , Tissue Scaffolds/chemistry , Biocompatible Materials/pharmacology , Stem Cells , Mesenchymal Stem Cells/metabolism , Hydrogels/pharmacology , Hydrogels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL