Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 454: 139839, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38810444

ABSTRACT

Probiotic lactic acid bacteria have been widely studied, but much less was focused on probiotic yeasts in food systems. In this study, probiotic Saccharomyces cerevisiae var. boulardii CNCM I-745 was employed to prepare ice cream added with and without inulin (1%, w/v). Metabolomics analysis on the effect of inulin showed 84 and 147 differentially expressed metabolites identified in the ice cream samples from day 1 and day 30 of storage (-18 °C), respectively. Various potential functional metabolites were found, including citric acid, ornithine, D-glucuronic acid, sennoside A, stachyose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, cis-aconitic acid, gamma-aminobutyric acid, L-threonine, L-glutamic acid, tryptophan, benzoic acid, and trehalose. Higher expression of these metabolites suggested their possible roles through relevant metabolic pathways in improving survivability of the probiotic yeast and functionality of ice cream. This study provides further understanding on the metabolic characteristics of probiotic yeast that potentially affect the functionality of ice cream.


Subject(s)
Ice Cream , Inulin , Metabolomics , Prebiotics , Probiotics , Saccharomyces cerevisiae , Synbiotics , Inulin/metabolism , Probiotics/metabolism , Synbiotics/analysis , Prebiotics/analysis , Saccharomyces cerevisiae/metabolism , Ice Cream/analysis , Ice Cream/microbiology , Saccharomyces boulardii/metabolism , Saccharomyces boulardii/chemistry
2.
Lett Appl Microbiol ; 76(5)2023 May 02.
Article in English | MEDLINE | ID: mdl-37133416

ABSTRACT

In this research, the synbiotic effects of the probiotic Lactiplantibacillus plantarum YW11 and lactulose on intestinal morphology, colon function, and immune activity were evaluated in a mouse model of UC induced by dextran sulfate sodium (DSS). The results revealed that L. plantarum YW11 in combination with lactulose decreased the severity of colitis in mice and improved the structure of the damaged colon, as assessed using colon length and disease condition. Moreover, colonic levels of pro-inflammatory cytokines (IL-1ß, IL-6, IL-12, TNF-α, and IFN-γ) were significantly lower and anti-inflammatory factors (IL-10) were significantly higher following the synbiotic supplementation. The synbiotic also exerted antioxidant effects by up-regulating SOD and CAT levels and down-regulating MDA levels in colon tissue. It could also reduce the relative expression of iNOS mRNA and increase the relative expression of nNOS and eNOS mRNA. Western blot confirmed the increased expression of c-Kit, IκBα, and SCF and significantly reduced expression of the NF-κB protein. Therefore, the combination of L. plantarum YW11 and lactulose exerted therapeutic effects mainly through the NF-κB anti-inflammatory pathway, which represented a novel synbiotic approach in the prevention of colonic inflammation.


Subject(s)
Colitis, Ulcerative , Probiotics , Synbiotics , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/prevention & control , Lactulose/metabolism , Lactulose/pharmacology , Lactulose/therapeutic use , NF-kappa B/genetics , NF-kappa B/metabolism , Dextran Sulfate/toxicity , Dextran Sulfate/metabolism , Colon/metabolism , Anti-Inflammatory Agents/therapeutic use , Probiotics/therapeutic use , Disease Models, Animal , Mice, Inbred C57BL
3.
Foods ; 12(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37238869

ABSTRACT

In this study, the exopolysaccharide (EPS) from Lactiplantibacillus plantarum (HMX2) was isolated from Chinese Northeast Sauerkraut. Its effects on juvenile turbot were investigated by adding different concentrations of HMX2-EPS (C: 0 mg/kg, H1: 100 mg/kg, H2: 500 mg/kg) to the feed. Compared with the control group, HMX2-EPS significantly improved the growth performance of juvenile turbot. The activities of antioxidant enzymes, digestive enzymes, and immune-related enzymes were significantly increased. HMX2-EPS could also increase the secretion of inflammatory factors and enhance the immune response of turbot by regulating the IFN signal transduction pathway and exhibit stronger survival rates after the A. hydrophila challenge. Moreover, HMX2-EPS could improve the diversity of intestinal microbiota in juvenile fish, increase the abundance of potential probiotics, and reduce the abundance of pathogenic bacteria. The function of gut microbes in metabolism and the immune system could also be improved. All results showed better effects with high concentrations of HMX2-EPS. These results indicated that HMX2-EPS supplementation in the diet could promote growth, improve antioxidant activity, digestive capacity, and immunity capacity, and actively regulate the intestinal microbiota of juvenile turbot. In conclusion, this study might provide basic technical and scientific support for the application of L. plantarum in aquatic feed.

4.
Plant Biotechnol J ; 21(7): 1426-1439, 2023 07.
Article in English | MEDLINE | ID: mdl-36965079

ABSTRACT

Vigna unguiculata is an important legume crop worldwide. The subsp. sesquipedalis and unguiculata are the two major types grown; the former is mainly grown in Asia to produce fresh pods, while the latter is mainly grown in Africa to produce seeds. Here, a chromosome-scale genome for subsp. sesquipedalis was generated by combining high-fidelity (HiFi) long-read sequencing with high-throughput chromosome conformation capture (Hi-C) technology. The genome size for all contigs and N50 were 594 and 18.5 Mb, respectively. The Hi-C interaction map helped cluster 91% of the contigs into 11 chromosomes. Genome comparisons between subsp. sesquipedalis and unguiculata revealed extensive genomic variations, and some variations resulted in gene loss. A germplasm panel with 315 accessions of V. unguiculata was resequenced, and a genomic variation map was constructed. Population structure and phylogenetic analyses suggested that subsp. sesquipedalis originated from subsp. unguiculata. Highly differentiated genomic regions were also identified, and a number of genes functionally enriched in adaptations were located in these regions. Two traits, pod length (PL) and pod width (PW), were observed for this germplasm, and genome-wide association analysis of these traits was performed. The quantitative trait loci (QTLs) for these two traits were identified, and their candidate genes were uncovered. Interestingly, genomic regions of PL QTLs also showed strong signals of artificial selection. Taken together, the results of this study provide novel insights into the population differentiation and genetic basis of key agricultural traits in V. unguiculata.


Subject(s)
Vigna , Vigna/genetics , Genome-Wide Association Study , Phylogeny , Chromosome Mapping , Genomics
5.
Foods ; 11(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35454654

ABSTRACT

In recent years, a variety of double protein dairy products have appeared on the market. It is a dairy product made by replacing parts of animal protein with plant protein and then using certain production methods. For some countries with limited milk resources, insufficient protein intake and low income, double protein dairy products have a bright future. More and more studies have found that double protein dairy products have combined effects which can alleviate the relatively poor functional properties of plant protein, including solubility, foaming, emulsifying and gelling. In addition, the taste of plant protein has been improved. This review focuses on the current state of research on double protein dairy products. It covers some salient features in the science and technology of plant proteins and suggests strategies for improving their use in various food applications. At the same time, it is expected that the fermentation methods used for those traditional dairy products as well as other processing technologies could be applied to produce novelty foods based on plant proteins.

6.
Fish Shellfish Immunol ; 88: 556-566, 2019 May.
Article in English | MEDLINE | ID: mdl-30885740

ABSTRACT

Fas-associated protein with death domain (FADD) is an essential element in cell death, and also implicates in cell cycle progression, inflammation and innate immunity. In the study, an FADD (designated as RpFADD) was identified and characterized from manila clam, Ruditapes philippinarum. Multiple alignments and phylogenetic analysis strongly suggested that RpFADD was a new member of the FADD family. The RpFADD transcripts were constitutively expressed in a wide range of tissues, and dominantly expressed in hemocytes. After challenged with Vibrio anguillarum or Micrococcus luteus, the expression level of RpFADD transcripts was significantly induced and reached the maximum level at 72 h and 48 h, respectively. Knockdown of RpFADD down-regulated the transcript levels of RpIKK, RpTAK1 and RpNF-κB with the exception of RpIκB. Moreover, RpFADD primarily localized in the cell cytoplasm, and its over-expression promoted the apoptosis of HeLa cells. These results revealed that RpFADD perhaps regulated the NF-κB signaling pathways positively, which provided a better understanding of RpFADD in innate immunity.


Subject(s)
Bivalvia/genetics , Fas-Associated Death Domain Protein/genetics , Immunity, Innate , Signal Transduction , Animals , Apoptosis , Bivalvia/immunology , Bivalvia/microbiology , Cloning, Molecular , Gene Expression , Gene Knockdown Techniques , HeLa Cells , Hemocytes/immunology , Hemocytes/microbiology , Humans , Micrococcus luteus , NF-kappa B/metabolism , Phylogeny , Transcriptome , Vibrio
7.
ScientificWorldJournal ; 2014: 857982, 2014.
Article in English | MEDLINE | ID: mdl-25431795

ABSTRACT

In order to screen the Catalpa plant with high antioxidant activity and confirm the corresponding active fractions from Catalpa ovata G. Don, C. fargesii Bur., and C. bungei C. A. Mey., total flavonoid contents and antioxidant activities of the extracts/fractions of Catalpa plant leaves were determined. The determined total flavonoid content and antioxidant activity were used as assessment criteria. Those compounds with antioxidant activity were isolated with silica gel column chromatography and ODS column chromatography. Our results showed that the total flavonoid content in C. bungei C. A. Mey. (30.07 mg/g · DW) was the highest, followed by those in C. fargesii Bur. (25.55 mg/g · DW) and C. ovata G. Don (24.96 mg/g · DW). According to the determination results of total flavonoid content and antioxidant activity in 3 clones of leaves of C. bungei C. A. Mey., the total flavonoid content and antioxidant activity in crude extracts from C. bungei C. A. Mey. 6 (CA6) leaves were the highest. Moreover, the results showed that the total flavonoid content and antioxidant activities of ethyl acetate (EA) fraction in ethanol crude extracts in CA6 leaves were the highest, followed by n-butanol, petroleum ether (PE), and water fractions. Two flavonoid compounds with antioxidant activity were firstly isolated based on EA fraction. The two compounds were luteolin (1) and apigenin (2), respectively.


Subject(s)
Antioxidants/isolation & purification , Apigenin/isolation & purification , Bignoniaceae/chemistry , Luteolin/isolation & purification , Plant Extracts/chemistry , Plant Leaves/chemistry , 1-Butanol , Acetates , Alkanes , Antioxidants/chemistry , Apigenin/chemistry , Biphenyl Compounds/antagonists & inhibitors , Ethanol , Hydroxyl Radical/antagonists & inhibitors , Luteolin/chemistry , Picrates/antagonists & inhibitors , Solvents
8.
ScientificWorldJournal ; 2014: 843764, 2014.
Article in English | MEDLINE | ID: mdl-24995364

ABSTRACT

Salicylic acid (SA) is an elicitor to induce the biosynthesis of secondary metabolites in plant cells. Hydrogen peroxide (H2O2) plays an important role as a key signaling molecule in response to various stimuli and is involved in the accumulation of secondary metabolites. However, the relationship between them is unclear and their synergetic functions on accumulation of secondary metabolites are unknown. In this paper, the roles of SA and H2O2 in rosmarinic acid (RA) production in Salvia miltiorrhiza cell cultures were investigated. The results showed that SA significantly enhanced H2O2 production, phenylalanine ammonia-lyase (PAL) activity, and RA accumulation. Exogenous H2O2 could also promote PAL activity and enhance RA production. If H2O2 production was inhibited by NADPH oxidase inhibitor (IMD) or scavenged by quencher (DMTU), RA accumulation would be blocked. These results indicated that H2O2 is secondary messenger for signal transduction, which can be induced by SA, significantly and promotes RA accumulation.


Subject(s)
Cinnamates/metabolism , Depsides/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Salicylic Acid/pharmacology , Salvia miltiorrhiza/metabolism , Cell Culture Techniques , Salvia miltiorrhiza/cytology , Salvia miltiorrhiza/drug effects , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...