Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 8: e901, 2022.
Article in English | MEDLINE | ID: mdl-35494843

ABSTRACT

Background: It is often the case that only a portion of the underlying network structure is observed in real-world settings. However, as most network analysis methods are built on a complete network structure, the natural questions to ask are: (a) how well these methods perform with incomplete network structure, (b) which structural observation and network analysis method to choose for a specific task, and (c) is it beneficial to complete the missing structure. Methods: In this paper, we consider the incomplete network structure as one random sampling instance from a complete graph, and we choose graph neural networks (GNNs), which have achieved promising results on various graph learning tasks, as the representative of network analysis methods. To identify the robustness of GNNs under graph sampling scenarios, we systemically evaluated six state-of-the-art GNNs under four commonly used graph sampling methods. Results: We show that GNNs can still be applied on single static networks under graph sampling scenarios, and simpler GNN models are able to outperform more sophisticated ones in a fairly experimental procedure. More importantly, we find that completing the sampled subgraph does improve the performance of downstream tasks in most cases; however, completion is not always effective and needs to be evaluated for a specific dataset. Our code is available at https://github.com/weiqianglg/evaluate-GNNs-under-graph-sampling.

2.
Entropy (Basel) ; 23(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207438

ABSTRACT

Collected network data are often incomplete, with both missing nodes and missing edges. Thus, network completion that infers the unobserved part of the network is essential for downstream tasks. Despite the emerging literature related to network recovery, the potential information has not been effectively exploited. In this paper, we propose a novel unified deep graph convolutional network that infers missing edges by leveraging node labels, features, and distances. Specifically, we first construct an estimated network topology for the unobserved part using node labels, then jointly refine the network topology and learn the edge likelihood with node labels, node features and distances. Extensive experiments using several real-world datasets show the superiority of our method compared with the state-of-the-art approaches.

3.
Entropy (Basel) ; 23(3)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673440

ABSTRACT

In recent years, on the basis of drawing lessons from traditional neural network models, people have been paying more and more attention to the design of neural network architectures for processing graph structure data, which are called graph neural networks (GNN). GCN, namely, graph convolution networks, are neural network models in GNN. GCN extends the convolution operation from traditional data (such as images) to graph data, and it is essentially a feature extractor, which aggregates the features of neighborhood nodes into those of target nodes. In the process of aggregating features, GCN uses the Laplacian matrix to assign different importance to the nodes in the neighborhood of the target nodes. Since graph-structured data are inherently non-Euclidean, we seek to use a non-Euclidean mathematical tool, namely, Riemannian geometry, to analyze graphs (networks). In this paper, we present a novel model for semi-supervised learning called the Ricci curvature-based graph convolutional neural network, i.e., RCGCN. The aggregation pattern of RCGCN is inspired by that of GCN. We regard the network as a discrete manifold, and then use Ricci curvature to assign different importance to the nodes within the neighborhood of the target nodes. Ricci curvature is related to the optimal transport distance, which can well reflect the geometric structure of the underlying space of the network. The node importance given by Ricci curvature can better reflect the relationships between the target node and the nodes in the neighborhood. The proposed model scales linearly with the number of edges in the network. Experiments demonstrated that RCGCN achieves a significant performance gain over baseline methods on benchmark datasets.

4.
PLoS One ; 13(4): e0188747, 2018.
Article in English | MEDLINE | ID: mdl-29694387

ABSTRACT

Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks.

5.
Sci Rep ; 8(1): 3245, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29459696

ABSTRACT

The multiple relationships among objects in complex systems can be described well by multiplex networks, which contain rich information of the connections between objects. The null model of networks, which can be used to quantify the specific nature of a network, is a powerful tool for analysing the structural characteristics of complex systems. However, the null model for multiplex networks remains largely unexplored. In this paper, we propose a null model for multiplex networks based on the node redundancy degree, which is a natural measure for describing the multiple relationships in multiplex networks. Based on this model, we define the modularity of multiplex networks to study the community structures in multiplex networks and demonstrate our theory in practice through community detection in four real-world networks. The results show that our model can reveal the community structures in multiplex networks and indicate that our null model is a useful approach for providing new insights into the specific nature of multiplex networks, which are difficult to quantify.

SELECTION OF CITATIONS
SEARCH DETAIL
...