Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38730886

ABSTRACT

In silicon carbide processing, the surface and subsurface damage caused by fixed abrasive grinding significantly affects the allowance of the next polishing process. A novel grinding wheel with a soft and hard composite structure was fabricated for the ultra-precision processing of SiC substrates, and the grinding performance of the grinding wheel was assessed in this study. Different types of gels, heating temperatures, and composition ratios were used to fabricate the grinding wheel. The grinding performance of the grinding wheel was investigated based on the surface integrity and subsurface damage of SiC substrates. The results showed that the grinding wheel with a soft and hard composite structure was successfully fabricated using freeze-dried gel with a heating temperature of 110 °C, and the component ratio of resin to gel was 4:6. A smooth SiC substrate surface with almost no cracks was obtained after processing with the grinding wheel. The abrasive exposure height was controlled by manipulating the type and ratio of the gel. Furthermore, the cutting depth in nanoscale could be achieved by controlling the abrasive exposure height. Therefore, the fabrication and application of the grinding wheels with soft and hard composite structures is important for the ultra-precision processing of large-size SiC substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...