Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
J Cereb Blood Flow Metab ; : 271678X241254677, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749908

ABSTRACT

Electroencephalogram (EEG) alpha-band oscillations may reflect executive and processing function in patients with cerebral small vessel disease (CSVD). We aimed to assess such association and its relationship with CSVD severity, and to identify specific alpha-band parameters and the cut-off values for cognitive screening. We analysed the dispersion of amplitude-frequency characteristics of EEG alpha-band and different alpha-band parameters (PFα , ΔPFα , PPα , NCL) in different brain locations. We also assessed patients' executive and processing functions using verbal fluency test (VFT) and color trails test (CTT), and CSVD severity using total burden and Fazekas scores. 129 patients were recruited in the study. After adjusting for age, gender and education, PFα(F3), PFα(F4) and NCL were significantly associated with VFT-composite performance (p < 0.05). CTT-1 time and error were associated with PFα(F3), PFα(F4), ΔPFα(O1;F3) and CSVD severity (p < 0.05), whereas CTT-2 time was only associated with CSVD severity. Moreover, the correlations between alpha-band oscillations and cognitive function were higher in low than in high disease-severity group (ρ: -0.58 vs. -0.38, p < 0.05). The AUC of selected alpha-band parameters were higher than 0.8 for VFT and CTT. Specific alpha-band parameters in the frontal lobe were identified to correspond to executive and processing function. Assessing EEG alpha-band oscillations may assist in screening cognitive impairment.

2.
Poult Sci ; 103(7): 103814, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38718538

ABSTRACT

Yolk Peritonitis can lead to a rapid decline in egg production, which seriously affects the health of laying hens and the profitability of chicken farms. Escherichia coli (E. coli) is the most common cause of yolk peritonitis in laying hens. In this study, bacterial samples were collected from the ovaries and fallopian tubes of laying hens with suspected yolk peritonitis from a laying farm in Jiangsu Province, and their pathogenicity and drug resistance were investigated. Initially, morphological and biochemical detection methods were employed to isolate and identify the pathogenic bacteria. The results showed that a total of 16 strains of E. coli were isolated from laying hens with yolk peritonitis. Subsequently, the drug resistance and pathogenicity of a randomly selected E. coli strain were analyzed and predicted by genome sequencing technology, and the drug resistance of E. coli was verified by drug sensitivity test and PCR. Finally, the virulence was verified by infection experiment in mice. The study revealed that the egg-yolk peritonitis in laying hens was caused by E. coli infection, and the genome sequencing analysis revealed that the bacteria had multidrug resistance and high virulence. The drug susceptibility testing indicates that E. coli exhibited resistance to aminoglycosides, ß-lactam, macrolides, fluoroquinolones, and sulfonamides. In this study, resistance genes including KdpE, aadA5, APH(3 ")-ID, APH(6)-ID, and TEM-1 were identified, and their expression levels varied across different stages of bacterial growth. The results of virulence analysis indicated a mortality rate of 50% in mice infected with E. coli at a concentration of 2.985 × 107 CFU/mL. E. coli infection resulted in damage to various tissues and organs in mice, with the intestinal tissue structure being the most severely affected. This study provides a reference for the study of drug resistance mechanisms in E. coli and provides valuable insights into the selection of drugs for the treatment of vitelline peritonitis.

3.
Environ Sci Pollut Res Int ; 31(18): 26510-26526, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38446297

ABSTRACT

Vanadium (V) plays a crucial role in normal cells, but excess V causes multi-organ toxicity, including neurotoxicity. Mitochondria-associated endoplasmic reticulum membrane (MAM) is a dynamic structure between endoplasmic reticulum (ER) and mitochondria that mediates ER quality control (ERQC). To explore the effects of excess V on MAM and ERQC in the brain, 72 ducks were randomly divided into two groups: the control group (basal diet) and the V group (30 mg V/kg basal diet). On days 22 and 44, brain tissues were collected for histomorphological observation and determination of trace element contents. In addition, the mRNA and protein levels of MAM and ERQC-related factors in the brain were analyzed. Results show that excessive V causes the imbalance of trace elements, the integrity disruption of MAM, rupture of ER and autophagosomes formation. Moreover, it inhibits IP3R and VDAC1 co-localization, down-regulates the expression levels of MAM-related factors, but up-regulates the expression levels of ERQC and autophagy related factors. Together, results indicate that V exposure causes disruption of MAM and activates ERQC, which is further causing autophagy.


Subject(s)
Brain , Ducks , Endoplasmic Reticulum , Mitochondria , Vanadium , Animals , Brain/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Vanadium/toxicity , Mitochondria/drug effects , Autophagy/drug effects
4.
Poult Sci ; 103(5): 103388, 2024 May.
Article in English | MEDLINE | ID: mdl-38428352

ABSTRACT

Pulmonary artery remodeling is a characteristic feature of broiler ascites syndrome (BAS). Pulmonary artery endothelial cells (PAECs) regulated by HIF-1α play a critical role in pulmonary artery remodeling, but the underlying mechanisms of HIF-1α in BAS remain unclear. In this experiment, primary PAECs were cultured in vitro and were identified by coagulation factor VIII. After hypoxia and RNA interference, the mRNA and protein expression levels of HIF-1α and VEGF were determined by qPCR and Western blotting. The transcriptome profiles of PAECs were obtained by RNA sequencing. Our results showed that the positive rate of PAECs was more than 90%, hypoxia-induced promoted the proliferation and apoptosis of PAECs, and RNA interference significantly downregulated the expression of HIF-1α, inhibited the proliferation of PAECs, and promoted the apoptosis of PAECs. In addition, transcriptome sequencing analysis indicated that HIF-1α may regulate broiler ascites syndrome by mediating COL4A, vitronectin, vWF, ITGα8, and MKP-5 in the ECM, CAMs and MAPK pathways in PAECs. These studies lay the foundation for further exploration of the mechanisms of pulmonary artery remodeling, and HIF-1α may be a potentially effective gene for the prevention and treatment of BAS.


Subject(s)
Chickens , Endothelial Cells , Hypoxia-Inducible Factor 1, alpha Subunit , Pulmonary Artery , RNA Interference , Animals , Pulmonary Artery/metabolism , Pulmonary Artery/cytology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Endothelial Cells/physiology , Endothelial Cells/metabolism , Cell Proliferation , Avian Proteins/genetics , Avian Proteins/metabolism , Poultry Diseases/genetics , Ascites/veterinary , Ascites/genetics , Apoptosis , Cells, Cultured
5.
Cell Signal ; 117: 111123, 2024 05.
Article in English | MEDLINE | ID: mdl-38417637

ABSTRACT

Mitochondria, the cellular powerhouses, possess their own unique genetic system, including replication, transcription, and translation. Studying these processes is crucial for comprehending mitochondrial disorders, energy production, and their related diseases. Over the past decades, various approaches have been applied in detecting and quantifying mitochondrial genome variations with also the purpose of manipulation of mitochondria or mitochondrial genome for therapeutics. Understanding the scope and limitations of above strategies is not only fundamental to the understanding of basic biology but also critical for exploring disease-related novel target(s), as well to develop innovative therapies. Here, this review provides an overview of different tools and techniques for accurate mitochondrial genome variations identification, quantification, and discuss novel strategies for the manipulation of mitochondria to develop innovative therapeutic interventions, through combining the insights gained from the study of mitochondrial genetics with ongoing single cell omics combined with advanced single molecular tools.


Subject(s)
Genome, Mitochondrial , Mitochondrial Diseases , Humans , DNA, Mitochondrial/genetics , Genome, Mitochondrial/genetics , Mitochondria/genetics , Mitochondrial Diseases/genetics
6.
Poult Sci ; 103(4): 103482, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387286

ABSTRACT

Fatty liver hemorrhagic syndrome (FLHS) is a prevalent metabolic disorder observed in egg-laying hens, characterized by fatty deposits and cellular steatosis in the liver. Our preliminary investigations have revealed a marked decrease in the concentration of butyric acid in the FLHS strain of laying hens. It has been established that sodium butyrate (NaB) protects against metabolic disorders. However, the underlying mechanism by which butyrate modulates hepato-lipid metabolism to a great extent remains unexplored. In this study, we constructed an isolated in vitro model of chicken primary hepatocytes to induce hepatic steatosis by free fatty acids (FFA). Our results demonstrate that treatment with NaB effectively mitigated FFA-induced hepatic steatosis in chicken hepatocytes by inhibiting lipid accumulation, downregulating the mRNA expression of lipo-synthesis-related genes (sterol regulatory element binding transcription factor 1 (SREBF1), acetyl-CoA carboxylase 1(ACC1), fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), liver X receptor α (LXRα), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)) (P < 0.05), and upregulating the mRNA and protein expression of AMP-activated protein kinase α1 (AMPKα1), peroxisome proliferator-activated receptor α (PPARα), and carnitine palmitoyl-transferase 1A (CPT1A) (P < 0.05). Moreover, AMPK and PPARα inhibitors (Compound C (Comp C) and GW6471, respectively) reversed the protective effects of NaB against FFA-induced hepatic steatosis by blocking the AMPK/PPARα pathway, leading to lipid droplet accumulation and triglyceride (TG) contents in chicken primary hepatocytes. With these findings, NaB can alleviate hepatocyte lipoatrophy injury by activating the AMPK/PPARα pathway, promoting fatty acid oxidation, and reducing lipid synthesis in chicken hepatocytes, potentially being able to provide new ideas for the treatment of FLHS.


Subject(s)
Abnormalities, Multiple , Craniofacial Abnormalities , Fatty Liver , Growth Disorders , Heart Septal Defects, Ventricular , PPAR alpha , Animals , Female , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR alpha/pharmacology , Chickens/genetics , Fatty Acids, Nonesterified/metabolism , AMP-Activated Protein Kinases/metabolism , Butyric Acid/pharmacology , Butyric Acid/metabolism , Fatty Liver/chemically induced , Fatty Liver/drug therapy , Fatty Liver/veterinary , Liver/metabolism , Hepatocytes , Lipid Metabolism , RNA, Messenger/metabolism , Fatty Acids/metabolism
7.
Antioxidants (Basel) ; 13(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38397738

ABSTRACT

Fatty liver hemorrhagic syndrome (FLHS) in laying hens is a nutritional metabolic disease commonly observed in high-yielding laying hens. Sodium butyrate (NaB) and ferroptosis were reported to contribute to the pathogenesis of fatty liver-related diseases. However, the underlying mechanism of NaB in FLHS and whether it mediates ferroptosis remains unclear. A chicken primary hepatocyte induced by free fatty acids (FFAs, keeping the ratio of sodium oleate and sodium palmitate concentrations at 2:1) was established, which received treatments with NaB, the ferroptosis inducer RAS-selective lethal 3 (RSL3), and the inhibitor ferrostatin-1 (Fer-1). As a result, NaB increased biochemical and lipid metabolism indices, and the antioxidant level, while inhibiting intracellular ROS accumulation and the activation of the ferroptosis signaling pathway, as evidenced by a reduction in intracellular iron concentration, upregulated GPX4 and xCT expression, and inhibited NCOA4 and ACSL4 expression. Furthermore, treatment with Fer-1 reinforced the protective effects of NaB, while RSL3 reversed it by blocking the ROS/GPX4/ferroptosis pathway, leading to the accumulation of lipid droplets and oxidative stress. Collectively, our findings demonstrated that NaB protects hepatocytes by regulating the ROS/GPX4-mediated ferroptosis pathway, providing a new strategy and target for the treatment of FLHS.

8.
Sci Total Environ ; 915: 169853, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38218477

ABSTRACT

The pollution and toxic effects of hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] have become worldwide public health issues. However, the potential detailed effects of chronic combined Cr(VI) and Ni exposure on colonic inflammation in mice have not been reported. In this study, 16S rDNA sequencing, metabolomics data analysis, qPCR and other related experimental techniques were used to comprehensively explore the mechanism of toxic damage and the inflammatory response of the colon in mice under the co-toxicity of chronic hexavalent chromium and nickel. The results showed that long-term exposure to Cr(VI) and/or Ni resulted in an imbalance of trace elements in the colon of mice with significant inflammatory infiltration of tissues. Moreover, Cr(VI) and/or Ni poisoning upregulated the expression levels of IL-6, IL-18, IL-1ß, TNF-α, IFN-γ, JAK2 and STAT3 mRNA, and downregulated IL-10 mRNA, which was highly consistent with the trend in protein expression. Combined with multiomics analysis, Cr(VI) and/or Ni could change the α diversity and ß diversity of the gut microbiota and induce significant differential changes in metabolites such as Pyroglu-Glu-Lys, Val-Asp-Arg, stearidonic acid, and 20-hydroxyarachidonic acid. They are also associated with disorders of important metabolic pathways such as lipid metabolism and amino acid metabolism. Correlation analysis revealed that there was a significant correlation between gut microbes and metabolites (P < 0.05). In summary, based on the advantages of comprehensive analysis of high-throughput sequencing sets, these results suggest that chronic exposure to Cr(VI) and Ni in combination can cause microbial flora imbalances, induce metabolic disorders, and subsequently cause colonic damage in mice. These data provide new insights into the toxicology and molecular mechanisms of Cr(VI) and Ni.


Subject(s)
Chromium , Nickel , Animals , Mice , Nickel/toxicity , Chromium/analysis , Inflammation , RNA, Messenger
9.
Biomed Pharmacother ; 171: 116205, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38290252

ABSTRACT

Atrazine (ATR), a water-soluble herbicide commonly used to control broad-leaf and monocotyledonous weeds, presents a significant risk to environmental soil and water quality. Exposure to ATR adversely affects human and animal health, frequently resulting in cardiac impairment. Curcumin (Cur), an acidic polyphenol derivative from plants acclaimed for its pronounced anti-inflammatory and antioxidant properties, has garnered interest as a potential therapeutic agent. However, whether it has the potential to ameliorate ATR-induced cardiac toxicity via modulation of endoplasmic reticulum stress (ERS) and apoptosis pathways in mice remains unclear. Our results showed that Cur supplementation attenuates ATR-induced cardiotoxicity, evidenced by decrease in creatine kinase and lactate dehydrogenase, key biochemical markers of myocardial injury, which have a more significant protecting effect in high-dose ATR induced injury. Histopathological and electron microscopy examinations further solidified these findings, demonstrating an amelioration in organellar damage, particularly in endoplasmic reticulum swelling and subsequent mitochondrial impairment. Additionally, ATR exposure augments ERS and triggers apoptotic pathways, as indicated by the upregulation of ERS-related gene expression (ATF6, CHOP, IRE1, GRP78) and pro-apoptotic markers (BAX, BAK1, Caspase3, Caspase. Intriguingly, Cur counteracts this detrimental response, significantly reducing ERS and pro-apoptotic signals at both transcriptional and translational levels. Collectively, our findings illuminate Cur's cardioprotective effect against ATR-induced injury, primarily through its anti-ERS and anti-apoptotic activities, underscoring Cur's potential as a therapeutic for ATR-induced cardiotoxicity.


Subject(s)
Atrazine , Curcumin , Humans , Mice , Animals , Cardiotoxicity/metabolism , Curcumin/pharmacology , Apoptosis , Endoplasmic Reticulum Stress , Signal Transduction , Activating Transcription Factor 6/metabolism
10.
Article in English | MEDLINE | ID: mdl-38204223

ABSTRACT

BACKGROUND: Dapagliflozin is commonly used to treat type 2 diabetes mellitus (T2DM). However, research into the specific anti-T2DM mechanisms of dapagliflozin remains scarce. OBJECTIVE: This study aimed to explore the underlying mechanisms of dapagliflozin against T2DM. METHODS: Dapagliflozin-associated targets were acquired from CTD, SwissTargetPrediction, and SuperPred. T2DM-associated targets were obtained from GeneCards and DigSee. VennDiagram was used to obtain the overlapping targets of dapagliflozin and T2DM. GO and KEGG analyses were performed using clusterProfiler. A PPI network was built by STRING database and Cytoscape, and the top 30 targets were screened using the degree, maximal clique centrality (MCC), and edge percolated component (EPC) algorithms of CytoHubba. The top 30 targets screened by the three algorithms were intersected with the core pathway-related targets to obtain the key targets. DeepPurpose was used to evaluate the binding affinity of dapagliflozin with the key targets. RESULTS: In total, 155 overlapping targets of dapagliflozin and T2DM were obtained. GO and KEGG analyses revealed that the targets were primarily enriched in response to peptide, membrane microdomain, protein serine/threonine/tyrosine kinase activity, PI3K-Akt signaling pathway, MAPK signaling pathway, and AGE-RAGE signaling pathway in diabetic complications. AKT1, PIK3CA, NOS3, EGFR, MAPK1, MAPK3, HSP90AA1, MTOR, RELA, NFKB1, IKBKB, ITGB1, and TP53 were the key targets, mainly related to oxidative stress, endothelial function, and autophagy. Through the DeepPurpose algorithm, AKT1, HSP90AA1, RELA, ITGB1, and TP53 were identified as the top 5 anti-targets of dapagliflozin. CONCLUSION: Dapagliflozin might treat T2DM mainly by targeting AKT1, HSP90AA1, RELA, ITGB1, and TP53 through PI3K-Akt signaling.

11.
Environ Pollut ; 343: 123232, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38171427

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known for its environmental endocrine-disrupting properties, posing potential risks to various organs. However, the precise impact of DEHP on intestinal health and its contribution to the initiation of intestinal inflammation remains elucidated. This study aims to investigate the underlying mechanisms of DEHP-induced intestinal inflammation in mice, specifically focusing on the complex interplay between the gut microbiota-metabolite axis and associated pathophysiological alterations. Our findings showed that DEHP-induced damage of multiple organs systemically, as indicated by abnormal liver and kidney biochemical markers, along with a disrupted ileum morphology. Additionally, DEHP exposure disrupted gut barrier function, causing intestinal inflammation characterized by bacterial translocation and alterations in defense and inflammation-related gene expressions. Moreover, 16S rRNA analysis suggested that DEHP-induced gut microbial remodeling is characterized by an upregulation of detrimental bacteria (Erysipelotrichaceae) and a downregulation of beneficial bacteria (Muribaculaceae, Ruminococcaceae, and Lachnospiraceae). Metabolomics analysis revealed DEHP perturbed gut metabolic homeostasis, particularly affecting the degradation of aromatic compounds, which generated an aberrant activation of the AhR and NF-κB, subsequently causing intestinal inflammation. Consequently, our results elucidate the mechanistic link between disrupted gut microbiota and metabolome and the initiation of DEHP-induced intestinal inflammation, mediated through the AhR/NF-κB signaling pathway.


Subject(s)
Diethylhexyl Phthalate , Gastrointestinal Microbiome , Phthalic Acids , Mice , Animals , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , NF-kappa B/metabolism , RNA, Ribosomal, 16S , Inflammation/chemically induced
12.
Sci Total Environ ; 912: 169374, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38104808

ABSTRACT

Molybdenum (Mo) is an essential nutrient in living organisms. Although numerous researchers have noticed the health damage caused by excessive Mo, the underlying mechanism of excessive Mo-induced nephrotoxicity remains poorly understood. A gene crosstalk called competitive endogenous RNAs (ceRNAs) can interpret many regulatory mechanisms molecularly. But there are few researches have tried to explain the damage mechanism of excess Mo to organisms through ceRNAs network. To clarify this, the study explored the changes in lncRNAs and miRNAs expression profiles in the kidney of ducks exposed to excess Mo for 16 weeks. The sequencing results showed that Mo exposure caused differential expression of 144 lncRNAs and 14 miRNAs. The occurrence of inflammation through the JAK/STAT axis was observed and the lncRNA-00072124/miR-308/OSMR axis was verified by a double luciferase reporter assay. Overexpression of miR-308 and RNA interference of OSMR reduced Mo-induced inflammatory factors, while miR-308 knockdown showed the opposite effect. Simultaneously, lncRNA-00072124 affected OSMR function as a ceRNA. Taken together, these results concluded that Mo exposure activated the JAK/STAT axis and induced inflammation mediated by the lncRNA-00072124/miR-308/OSMR crosstalk. The results might provide new views for revealing the toxic effects of excess Mo in duck kidneys.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Animals , Ducks , RNA, Long Noncoding/genetics , Molybdenum/toxicity , MicroRNAs/genetics , Kidney/metabolism , Inflammation/chemically induced
13.
Int J Mol Sci ; 24(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139070

ABSTRACT

Hexavalent chromium (Cr(VI)) is a hazardous substance that poses significant risks to environmental ecosystems and animal organisms. However, the specific consequences of Cr(VI) exposure in terms of liver damage remain incompletely understood. This study aims to elucidate the mechanism by which Cr(VI) disrupts mitochondrial dynamics, leading to hepatic injury in ducks. Forty-eight healthy 8-day-old ducks were divided into four groups and subjected to diets containing varying doses of Cr(VI) (0, 9.28, 46.4, and 232 mg/kg) for 49 days. Our results demonstrated that Cr(VI) exposure resulted in disarranged liver lobular vacuolation, along with increasing the serum levels of ALT, AST, and AKP in a dose-dependent manner, which indicated liver damage. Furthermore, Cr(VI) exposure induced oxidative stress by reducing the activities of T-SOD, SOD, GSH-Px, GSH, and CAT, while increasing the contents of MDA and H2O2. Moreover, Cr(VI) exposure downregulated the activities of CS and MDH, resulting in energy disturbance, as evidenced by the reduced AMPK/p-AMPK ratio and PGC-1α protein expression. Additionally, Cr(VI) exposure disrupted mitochondrial dynamics through decreased expression of OPA1, Mfn1, and Mfn2 and increased expression of Drp-1, Fis1, and MFF proteins. This disruption ultimately triggered mitochondria-mediated apoptosis, as evidenced by elevated levels of caspase-3, Cyt C, and Bax, along with decreased expression of Bcl-2 and the Bcl-2/Bax ratio, at both the protein and mRNA levels. In summary, this study highlights that Cr(VI) exposure induces oxidative stress, inhibits the AMPK-PGC-1α pathway, disrupts mitochondrial dynamics, and triggers liver cell apoptosis in ducks.


Subject(s)
AMP-Activated Protein Kinases , Ducks , Animals , bcl-2-Associated X Protein/metabolism , Mitochondrial Dynamics , Ecosystem , Hydrogen Peroxide , Liver/metabolism , Apoptosis , Chromium/toxicity , Proto-Oncogene Proteins c-bcl-2/genetics , Superoxide Dismutase
14.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139133

ABSTRACT

Berberine (BBR) is a natural alkaloid with multiple biotical effects that has potential as a treatment for fatty liver hemorrhagic syndrome (FLHS). However, the mechanism underlying the protective effect of BBR against FLHS remains unclear. The present study aimed to investigate the effect of BBR on FLHS induced by a high-energy, low-protein (HELP) diet and explore the involvement of the gut microbiota and bile acid metabolism in the protective effects. A total of 90 healthy 140-day-old Hy-line laying hens were randomly divided into three groups, including a control group (fed a basic diet), a HELP group (fed a HELP diet), and a HELP+BBR group (high-energy, high-protein diet supplemented with BBR instead of maize). Our results show that BBR supplementation alleviated liver injury and hepatic steatosis in laying hens. Moreover, BBR supplementation could significantly regulate the gut's microbial composition, increasing the abundance of Actinobacteria and Romboutsia. In addition, the BBR supplement altered the profile of bile acid. Furthermore, the gut microbiota participates in bile acid metabolism, especially taurochenodeoxycholic acid and α-muricholic acid. BBR supplementation could regulate the expression of genes and proteins related to glucose metabolism, lipid synthesis (FAS, SREBP-1c), and bile acid synthesis (FXR, CYP27a1). Collectively, our findings demonstrate that BBR might be a potential feed additive for preventing FLHS by regulating the gut microbiota and bile acid metabolism.


Subject(s)
Berberine , Fatty Liver , Gastrointestinal Microbiome , Animals , Female , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , Diet, Protein-Restricted , Chickens , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/prevention & control , Liver/metabolism , Bile Acids and Salts/metabolism
15.
Vet Microbiol ; 286: 109891, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37866328

ABSTRACT

Nephropathogenic infectious bronchitis virus (NIBV) infections continue to pose a significant hazard in the poultry industry. Baicalin is a natural flavonoid that has been reported to have antiviral activity, but its function in NIBV infection largely remains unclear. In this study, the antiviral mechanism of baicalin in the spleen of NIBV-infected chicks was mainly elucidated in mitophagy and macrophage polarization. 28-day-old Hy-Line brown chicks were randomly divided into four groups: the group of chicks was treated intranasally (in) with normal saline (0.2 mL) and subsequently divided into two groups: the Con group (basic diet), the Con+BA group (basic diet+10 mg/kg Baicalin); another group of chicks was intranasally infected with SX9 (10-5/0.2 mL) and subsequently divided into two groups: the Dis group (basic diet), the Dis+BA group (basic diet+10 mg/kg Baicalin). Spleen tissues were collected at 3, 7, and 11 days post infection (dpi). NIBV copy number was strikingly decreased in the spleens under BA treatment with infectious time. Histopathological examination showed enlarged and hemorrhagic white pulp and no clearly defined boundary between white pulp and red pulp in the Dis group, which could be improved by BA treatment. Meanwhile, the loss of cristae structure and vacuolization in mitochondria caused by NIBV infection was repaired in the Dis+BA group by ultrastructure observation. In addition, BA treatment inhibited the induction of mitophagy by NIBV infection. BA treatment also promoted innate immunity by enhancing type I IFN levels. Moreover, BA treatment up-regulated M1-related cytokines (iNOS, TNF-α, IL-1ß, IL-6) and inhibited M2-related cytokines (ARG2, IL-4, IL-10, Pparg) at the mRNA and protein levels. However, the results from the splenic tissues at 11 dpi are opposite results from 3 and 7 dpi. Immunofluorescence analysis for M1 macrophage marker iNOS and M2 macrophage marker CD163 further validated this result. Collectively, BA inhibited mitophagy and triggered IFN activation, and M1 polarization, which contributed to the inhibition of NIBV infection.


Subject(s)
Infectious bronchitis virus , Animals , Spleen , Mitophagy , Chickens , Flavonoids/pharmacology , Cytokines/genetics , Macrophages , Antiviral Agents
16.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37843035

ABSTRACT

The adverse effects of chronic heat stress (CHS)-induced fatty liver syndrome on laying hens during the egg-producing stages have been wildly documented. However, until nowadays, the CHS responses of growing laying hens as well as its alleviating effects of vitamin C are rarely reported. In this study, 12-wk-old laying hens were subjected to CHS at 36 °C for 10 h/d for 3 wk with or without dietary supplementation of 300 mg/kg vitamin C. Results showed that CHS significantly impaired the growth performances and the liver functions of birds, as characterized by reduced feed intake and body weight, increased hepatic lipid accumulation and serum concentrations of TG, ALT, and AST, as well as the abnormal expression patterns of the lipid metabolism-related genes. Vitamin C supplementation successfully mitigated the lipid accumulation, while showing no alleviating effect on the serum contents of ALT or AST, which are two key indicators of liver functions. Metabolomic analysis based on UPLC-Q-TOF/MS identified 173 differential metabolites from the HS and HSV group samples, and they are mainly enriched in the pathways related to the cellular components, vitamin and amino acid metabolism and energy substance metabolism. The results indicate that CHS-induced hepatic lipid deposition in growing laying hens is effectively alleviated by dietary supplementation of vitamin C, which is probably resulted from the alterations of hepatocellular metabolic patterns.


Chronic heat stress (CHS)-induced fatty liver syndrome (FLS) is one of the major problems faced in poultry industry. However, the heat stress response as well as the alleviating strategies for growing laying hens is rarely concerned until nowadays. In this study, 12-wk-old laying hens were subjected to the CHS condition with or without dietary supplementation of 300 mg/kg vitamin C, we found that CHS can also remarkably impair the growth performance and liver functions and induce the hepatic lipid metabolism disorders in the growing laying hens. Vitamin C supplementation successfully mitigated the hepatic lipid accumulation, while showed no alleviating effect on the liver functions. Metabolomic analysis further identified 173 differential metabolites between CHS and HSV groups, which are mainly enriched in the pathways including the cellular components, vitamin and amino acid metabolism and the energy substance metabolism. The results suggest that vitamin C supplementation can effectively alleviate the hepatic lipid deposition in growing laying hens under CHS probably through altering their energy metabolism patterns.


Subject(s)
Ascorbic Acid , Dietary Supplements , Animals , Female , Ascorbic Acid/pharmacology , Dietary Supplements/analysis , Diet/veterinary , Lipid Metabolism , Chickens/physiology , Vitamins/metabolism , Heat-Shock Response , Liver/metabolism , Lipids , Animal Feed/analysis
17.
J Am Heart Assoc ; 12(16): e029963, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37548171

ABSTRACT

Background Smoking is a well-established risk factor for the development of acute ischemic stroke (AIS). However, the "smoker's paradox" suggests that it is associated with favorable clinical outcomes following stroke. We aimed to reevaluate the association between smoking and in-hospital outcomes in patients with AIS in contemporary practice. Methods and Results A total of 649 610 inpatients with AIS from 1476 participating hospitals in the Chinese Stroke Center Alliance were included. In-hospital outcomes measurement included all-cause mortality, discharge against medical advice, and complications. Multivariable logistic regression models adjusting for baseline characteristics, clinical profiles at presentation, and in-hospital management were used to evaluate the association between smoking and in-hospital outcomes. A propensity score-matched analysis was also conducted. Of these patients with AIS, 36.8% (n=238 912) were smokers. Smokers were younger, had fewer comorbidities, and had slightly lower rates of adverse in-hospital outcomes than nonsmokers (all-cause death or discharge against medical advice: 6.0% versus 6.1%; in-hospital complications: 14.5% versus 15.1%). Multivariable analysis revealed that smoking was associated with higher risk of adverse in-hospital outcomes (all-cause death or discharge against medical advice: odds ratio [OR], 1.05 [95% CI, 1.02-1.08]; P<0.001; complications: OR, 1.06 [95% CI, 1.04-1.08]; P<0.001). The excess risk of adverse in-hospital outcomes remained in smoking patients with AIS after propensity score-matching analysis (all-cause death or discharge against medical advice: OR, 1.04 [95% CI, 1.00-1.08]; P=0.034; complications: OR, 1.05 [95% CI, 1.03-1.08]; P<0.001). Conclusions Smoking was associated with increased risk of adverse in-hospital outcomes among patients with AIS in contemporary practice, reinforcing the importance of smoking cessation in patients with AIS.


Subject(s)
Ischemic Stroke , Stroke , Humans , Ischemic Stroke/diagnosis , Ischemic Stroke/epidemiology , Ischemic Stroke/therapy , East Asian People , Smoking/adverse effects , Smoking/epidemiology , Tobacco Smoking , Treatment Outcome
18.
Animals (Basel) ; 13(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37443849

ABSTRACT

Energy deficiency causes multiple organ dysfunctions after LPS induction. Quercetin is a phenolic compound found in herbal medicines. However, the effects of quercetin in alleviating LPS-induced energy deficiency remain unclear. In the present study, an in vivo LPS-induced inflammation model was established in chicken embryos. Specific pathogen-free chicken embryos (n = 120) were allocated to control, PBS with or without ethanol, quercetin (10, 20, or 40 nmol, respectively), and LPS (125 ng/egg) with or without quercetin groups. Fifteen day old embryonated eggs were injected with the abovementioned solutions via the allantoic cavity. On embryonic day 19, the tissues of the embryos were collected for histopathological examination using frozen oil red O staining, RNA extraction, real-time quantitative polymerase chain reaction, and immunohistochemical investigations. The glycogen and lipid contents in the liver increased after LPS stimulation as compared with the PBS group, whereas quercetin decreased the accumulation as compared with the LPS group. The mRNA expressions of AMPKα1 and AMPKα2 in the duodena, ceca, and livers were upregulated after LPS induction as compared with the PBS group, while quercetin could downregulate these expressions as compared with the LPS group. The immunopositivity of AMPKα2 in the villus, crypt, lamina propria, tunica muscularis, and myenteric plexus in the duodena and in the cytoplasms of hepatocytes significantly increased after LPS induction when compared with the PBS group (p < 0.01), whereas the immunopositivity to AMPKα2 in the quercetin treatment group significantly decreased when compared with the LPS group (p < 0.01 or p < 0.05). The LPS-induced high expressions of transcription factor PPARα and glucose transporter (SGLT1) were blocked by quercetin in the duodena, ceca, and livers. Quercetin treatment improved the LPS-induced decrease in APOA4 in the duodena, ceca, and livers. The mRNA expression of PEPT1 in the duodena and ceca increased after LPS challenge, whereas quercetin could downregulate PEPT1 gene expression. These data demonstrate that quercetin improved the energy deficiency induced by LPS in chicken embryos. The LPS-induced inflammation model was established to avoid the effect of LPS exposure from the environment and intestinal flora. The results form the basis the administration of quercetin pretreatment (in ovo infection) to improve the energy state of chicken embryos and improve the inflammation response.

19.
BMC Microbiol ; 23(1): 180, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37420170

ABSTRACT

This study aimed to understand the changes in the milk and gut microbiota of dairy cows with mastitis, and to further explore the relationship between mastitis and the microbiota. In this study, we extracted microbial DNA from healthy and mastitis cows and performed high-throughput sequencing using the Illumina NovaSeq sequencing platform. OTU clustering was performed to analyze complexity, multi-sample comparisons, differences in community structure between groups, and differential analysis of species composition and abundance. The results showed that there were differences in microbial diversity and community composition in the milk and feces of normal and mastitis cows, where the diversity of microbiota decreased and species abundance increased in the mastitis group. There was a significant difference in the flora composition of the two groups of samples (P < 0.05), especially at the genus level, the difference in the milk samples was Sphingomonas (P < 0.05) and Stenotrophomonas (P < 0.05), the differences in stool samples were Alistipes (P < 0.05), Flavonifractor (P < 0.05), Agathobacter (P < 0.05) and Pygmaiobacter (P < 0.05). In conclusion, the microbiota of the udder and intestinal tissues of dairy cows suffering from mastitis will change significantly. This suggests that the development of mastitis is related to the endogenous pathway of microbial intestinal mammary glands, but the mechanisms involved need further study.


Subject(s)
Lactobacillales , Mastitis , Microbiota , Female , Cattle , Animals , Humans , Milk , DNA, Ribosomal/genetics , High-Throughput Nucleotide Sequencing
20.
Int J Mol Sci ; 24(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37298392

ABSTRACT

Oxidative stress can adversely affect the health status of the body, more specifically by causing intestinal damage by disrupting the permeability of the intestinal barrier. This is closely related to intestinal epithelial cell apoptosis caused by the mass production of reactive oxygen species (ROS). Baicalin (Bai) is a major active ingredient in Chinese traditional herbal medicine that has antioxidant, anti-inflammatory, and anti-cancer properties. The purpose of this study was to explore the underlying mechanisms by which Bai protects against hydrogen peroxide (H2O2)-induced intestinal injury in vitro. Our results indicated that H2O2 treatment caused injury to IPEC-J2 cells, resulting in their apoptosis. However, Bai treatment attenuated H2O2-induced IPEC-J2 cell damage by up-regulating the mRNA and protein expression of ZO-1, Occludin, and Claudin1. Besides, Bai treatment prevented H2O2-induced ROS and MDA production and increased the activities of antioxidant enzymes (SOD, CAT, and GSH-PX). Moreover, Bai treatment also attenuated H2O2-induced apoptosis in IPEC-J2 cells by down-regulating the mRNA expression of Caspase-3 and Caspase-9 and up-regulating the mRNA expression of FAS and Bax, which are involved in the inhibition of mitochondrial pathways. The expression of Nrf2 increased after treatment with H2O2, and Bai can alleviate this phenomenon. Meanwhile, Bai down-regulated the ratio of phosphorylated AMPK to unphosphorylated AMPK, which is indicative of the mRNA abundance of antioxidant-related genes. In addition, knockdown of AMPK by short-hairpin RNA (shRNA) significantly reduced the protein levels of AMPK and Nrf2, increased the percentage of apoptotic cells, and abrogated Bai-mediated protection against oxidative stress. Collectively, our results indicated that Bai attenuated H2O2-induced cell injury and apoptosis in IPEC-J2 cells through improving the antioxidant capacity through the inhibition of the oxidative stress-mediated AMPK/Nrf2 signaling pathway.


Subject(s)
Antioxidants , Hydrogen Peroxide , AMP-Activated Protein Kinases/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Apoptosis , Cell Line , Hydrogen Peroxide/toxicity , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction , Swine , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...