Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.206
Filter
1.
Opt Lett ; 49(11): 2966-2969, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824304

ABSTRACT

Over the past decades, spin qubits in silicon carbide (SiC) have emerged as promising platforms for a wide range of quantum technologies. The fluorescence intensity holds significant importance in the performance of quantum photonics, quantum information process, and sensitivity of quantum sensing. In this work, a dual-layer Au/SiO2 dielectric cavity is employed to enhance the fluorescence intensity of a shallow silicon vacancy ensemble in 4H-SiC. Experimental results demonstrate an effective fourfold augmentation in fluorescence counts at saturating laser power, corroborating our theoretical predictions. Based on this, we further investigate the influence of dielectric cavities on the contrast and linewidth of optically detected magnetic resonance (ODMR). There is a 1.6-fold improvement in magnetic field sensitivity. In spin echo experiments, coherence times remain constant regardless of the thickness of dielectric cavities. These experiments pave the way for broader applications of dielectric cavities in SiC-based quantum technologies.

2.
Chem Commun (Camb) ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836703

ABSTRACT

Cobalt substitution for manganese sites in Na0.44MnO2 initiates a dynamic structural evolution process, yielding a composite cathode material comprising intergrown P2 and P3 phases. The novel P2/P3 composite cathode exhibits a reversible phase transition process during Na+ extraction/insertion, showcasing its attractive battery performance in sodium-ion batteries.

3.
Eur J Surg Oncol ; 50(7): 108372, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38718620

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) is the most prevalent biliary tract tumor characterized by a high incidence of recurrence, even after curative-intent surgery. The object of this systematic review and meta-analysis was to investigate the risk factors related to early recurrence (ER). METHODS: A systematic literature review was conducted in PubMed, Embase, Cochrane Library, and Web of Science to identify published articles up to February 2024. Data on risk factors associated with ER reported by two or more studies were collected. Selection of different effect models based on data heterogeneity. RESULTS: Out of 6497 initially identified articles based on our search strategies, only 5 were eligible and included in this meta-analysis and 12 ER-related factors were collected. The overall recurrence rate was reported between 32.3% and 61.0 %, and the ER rate ranged from 19.6% to 26.5 %. Concentrations of CA19-9 (OR 3.03 95 % CI 2.20-4.17) and CEA (OR 1.85 95 % CI 1.24-2.77), tumor differentiation (OR 2.79, 95 % CI 1.86-4.20), AJCC T stage (OR 7.64, 95%CI 3.40-17.18), lymphovascular invasion (OR 2.71, 95 % CI 1.83-4.03), perineural invasion (OR 2.71, 95 % CI 1.79-4.12), liver involvement (OR 5.69, 95%CI 3.78-8.56) and adjuvant therapy (OR 2.19, 95 % CI 1.06-4.55) were identified as the risk factors of ER. CONCLUSION: This study may provide valuable insights for early identification of increased ER risk and making informed decisions regarding the comprehensive diagnosis and treatment of patients with GBC. To draw more definitive conclusions, there is a need for high-quality prospective studies involving multiple centers and diverse racial populations.

4.
J Transl Med ; 22(1): 422, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702814

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm and characterized by desmoplastic matrix. The heterogeneity and crosstalk of tumor microenvironment remain incompletely understood. METHODS: To address this gap, we performed Weighted Gene Co-expression Network Analysis (WGCNA) to identify and construct a cancer associated fibroblasts (CAFs) infiltration biomarker. We also depicted the intercellular communication network and important receptor-ligand complexes using the single-cell transcriptomics analysis of tumor and Adjacent normal tissue. RESULTS: Through the intersection of TCGA DEGs and WGCNA module genes, 784 differential genes related to CAFs infiltration were obtained. After a series of regression analyses, the CAFs score was generated by integrating the expressions of EVA1A, APBA2, LRRTM4, GOLGA8M, BPIFB2, and their corresponding coefficients. In the TCGA-CHOL, GSE89748, and 107,943 cohorts, the high CAFs score group showed unfavorable survival prognosis (p < 0.001, p = 0.0074, p = 0.028, respectively). Additionally, a series of drugs have been predicted to be more sensitive to the high-risk group (p < 0.05). Subsequent to dimension reduction and clustering, thirteen clusters were identified to construct the single-cell atlas. Cell-cell interaction analysis unveiled significant enhancement of signal transduction in tumor tissues, particularly from fibroblasts to malignant cells via diverse pathways. Moreover, SCENIC analysis indicated that HOXA5, WT1, and LHX2 are fibroblast specific motifs. CONCLUSIONS: This study reveals the key role of fibroblasts - oncocytes interaction in the remodeling of the immunosuppressive microenvironment in intrahepatic cholangiocarcinoma. Subsequently, it may trigger cascade activation of downstream signaling pathways such as PI3K-AKT and Notch in tumor, thus initiating tumorigenesis. Targeted drugs aimed at disrupting fibroblasts-tumor cell interaction, along with associated enrichment pathways, show potential in mitigating the immunosuppressive microenvironment that facilitates tumor progression.


Subject(s)
Bile Duct Neoplasms , Cancer-Associated Fibroblasts , Cholangiocarcinoma , Gene Expression Regulation, Neoplastic , Single-Cell Analysis , Tumor Microenvironment , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Humans , Tumor Microenvironment/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Prognosis , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Transcriptome/genetics , Gene Expression Profiling , Gene Regulatory Networks , Cell Communication
5.
Breast Cancer Res ; 26(1): 76, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745208

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer death among women globally. Despite advances, there is considerable variation in clinical outcomes for patients with non-luminal A tumors, classified as difficult-to-treat breast cancers (DTBC). This study aims to delineate the proteogenomic landscape of DTBC tumors compared to luminal A (LumA) tumors. METHODS: We retrospectively collected a total of 117 untreated primary breast tumor specimens, focusing on DTBC subtypes. Breast tumors were processed by laser microdissection (LMD) to enrich tumor cells. DNA, RNA, and protein were simultaneously extracted from each tumor preparation, followed by whole genome sequencing, paired-end RNA sequencing, global proteomics and phosphoproteomics. Differential feature analysis, pathway analysis and survival analysis were performed to better understand DTBC and investigate biomarkers. RESULTS: We observed distinct variations in gene mutations, structural variations, and chromosomal alterations between DTBC and LumA breast tumors. DTBC tumors predominantly had more mutations in TP53, PLXNB3, Zinc finger genes, and fewer mutations in SDC2, CDH1, PIK3CA, SVIL, and PTEN. Notably, Cytoband 1q21, which contains numerous cell proliferation-related genes, was significantly amplified in the DTBC tumors. LMD successfully minimized stromal components and increased RNA-protein concordance, as evidenced by stromal score comparisons and proteomic analysis. Distinct DTBC and LumA-enriched clusters were observed by proteomic and phosphoproteomic clustering analysis, some with survival differences. Phosphoproteomics identified two distinct phosphoproteomic profiles for high relapse-risk and low relapse-risk basal-like tumors, involving several genes known to be associated with breast cancer oncogenesis and progression, including KIAA1522, DCK, FOXO3, MYO9B, ARID1A, EPRS, ZC3HAV1, and RBM14. Lastly, an integrated pathway analysis of multi-omics data highlighted a robust enrichment of proliferation pathways in DTBC tumors. CONCLUSIONS: This study provides an integrated proteogenomic characterization of DTBC vs LumA with tumor cells enriched through laser microdissection. We identified many common features of DTBC tumors and the phosphopeptides that could serve as potential biomarkers for high/low relapse-risk basal-like BC and possibly guide treatment selections.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Proteogenomics , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Biomarkers, Tumor/genetics , Proteogenomics/methods , Mutation , Laser Capture Microdissection , Middle Aged , Retrospective Studies , Aged , Adult , Proteomics/methods , Prognosis
6.
Proc Natl Acad Sci U S A ; 121(20): e2306776121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709933

ABSTRACT

A high-fat diet (HFD) is a high-risk factor for the malignant progression of cancers through the disruption of the intestinal microbiota. However, the role of the HFD-related gut microbiota in cancer development remains unclear. This study found that obesity and obesity-related gut microbiota were associated with poor prognosis and advanced clinicopathological status in female patients with breast cancer. To investigate the impact of HFD-associated gut microbiota on cancer progression, we established various models, including HFD feeding, fecal microbiota transplantation, antibiotic feeding, and bacterial gavage, in tumor-bearing mice. HFD-related microbiota promotes cancer progression by generating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, the HFD microbiota released abundant leucine, which activated the mTORC1 signaling pathway in myeloid progenitors for PMN-MDSC differentiation. Clinically, the elevated leucine level in the peripheral blood induced by the HFD microbiota was correlated with abundant tumoral PMN-MDSC infiltration and poor clinical outcomes in female patients with breast cancer. These findings revealed that the "gut-bone marrow-tumor" axis is involved in HFD-mediated cancer progression and opens a broad avenue for anticancer therapeutic strategies by targeting the aberrant metabolism of the gut microbiota.


Subject(s)
Breast Neoplasms , Cell Differentiation , Diet, High-Fat , Disease Progression , Gastrointestinal Microbiome , Leucine , Myeloid-Derived Suppressor Cells , Animals , Diet, High-Fat/adverse effects , Leucine/metabolism , Female , Humans , Mice , Myeloid-Derived Suppressor Cells/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/microbiology , Breast Neoplasms/metabolism , Obesity/microbiology , Obesity/metabolism , Obesity/pathology , Cell Line, Tumor
7.
Int J Surg ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788199

ABSTRACT

OBJECTIVE: To evaluate the effectiveness of the combined extra-hepatic bile duct resection (EHBDR) in cases with intrahepatic cholangiocarcinoma (IHCC) in terms of clinicopathological features and long-term survival. METHODS: Radically resected cases with IHCC from 2000 to 2020 were identified from Surveillance, Epidemiology, and End Results (SEER) database. Comparative analyses were performed between resected IHCC patients who received EHBDR and those without EHBDR. Moreover, an external validation was further performed based on a single-center cohort. RESULTS: A total of 1521 radically resected cases with IHCC (EHBDR: 189) were identified from SEER database. Comparable age, sex, race, marital status, liver cirrhosis, differentiation status, and adjuvant chemotherapy were acquired between two groups. EHBDR was associated with a higher incidence of adequate lymphadenectomy (P<0.001). The incidence of cases with T3-4 or N+ disease was significantly higher in EHBDR group (P<0.001). Adjuvant radiotherapy was more frequently performed in cases with EHBDR (P<0.001). EHBDR failed to brought any survival benefit and was associated with a worse prognosis even after matching. Similar findings have also been revealed in the external validation cohort (n=522, EHBDR: 117). EHBDR was associated with more extended resections, more aggressive tumor biological features, and worse prognosis. In the matched validation cohort, EHBDR was still associated with a higher incidence of early recurrence. CONCLUSION: EHBDR was an indicator of advanced stage and failed to brought any survival benefit. It is the tumor stage which really determines the prognosis. More in-depth analyses focusing on different situations of EHBDR with more detailed clinical data are required.

8.
Antioxidants (Basel) ; 13(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38790682

ABSTRACT

Brucella virulence relies on its successful intracellular life cycle. Modulating host cell death is a strategy for Brucella to survive and replicate intracellularly. Ferroptosis is a novel regulated cell death characterized by iron-triggered excessive lipid peroxidation, which has been proven to be associated with pathogenic bacteria infection. Thus, we attempted to explore if smooth-type Brucella infection triggers host cell ferroptosis and what role it plays in Brucella infection. We assessed the effects of Brucella infection on the lactate dehydrogenase release and lipid peroxidation levels of RAW264.7 macrophages; subsequently, we determined the effect of Brucella infection on the expressions of ferroptosis defense pathways. Furthermore, we determined the role of host cell ferroptosis in the intracellular replication and egress of Brucella. The results demonstrated that Brucella M5 could induce ferroptosis of macrophages by inhibiting the GPX4-GSH axis at the late stage of infection but mitigated ferroptosis by up-regulating the GCH1-BH4 axis at the early infection stage. Moreover, elevating host cell ferroptosis decreased Brucella intracellular survival and suppressing host cell ferroptosis increased Brucella intracellular replication and egress. Collectively, Brucella may manipulate host cell ferroptosis to facilitate its intracellular replication and egress, extending our knowledge about the underlying mechanism of how Brucella completes its intracellular life cycle.

9.
Inorg Chem ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772008

ABSTRACT

To date, developing crystalline proton-conductive metal-organic frameworks (MOFs) with an inherent excellent proton-conducting ability and structural stability has been a critical priority in addressing the technologies required for sustainable development and energy storage. Bearing this in mind, a multifunctional organic ligand, 3,4-dimethylthiophene[2,3-b]thiophene-2,5-dicarboxylic acid (H2DTD), was employed to generate two exceptionally stable three-dimensional porous Zr/Hf MOFs, [Zr6O4(OH)4(DTD)6]·5DMF·H2O (Zr-DTD) and [Hf6O4(OH)4(DTD)6]·4DMF·H2O (Hf-DTD), using solvothermal means. The presence of Zr6 or Hf6 nodes, strong Zr/Hf-O bonds, the electrical influence of the methyl group, and the steric effect of the thiophene unit all contribute to their structural stability throughout a wide pH range as well as in water. Their proton conductivity was fully examined at various relative humidities (RHs) and temperatures. Creating intricate and rich H-bonded networks between the guest water molecules, coordination solvent molecules, thiophene-S, -COOH, and -OH units within the framework assisted proton transfer. As a result, both MOFs manifest the maximum proton conductivity of 0.67 × 10-2 and 4.85 × 10-3 S·cm-1 under 98% RH/100 °C, making them the top-performing proton-conductive Zr/Hf-MOFs. Finally, by combining structural characteristics and activation energies, potential proton conduction pathways for the two MOFs were identified.

10.
ACS Nano ; 18(20): 12945-12956, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717846

ABSTRACT

P3-layered transition oxide cathodes have garnered considerable attention owing to their high initial capacity, rapid Na+ kinetics, and less energy consumption during the synthesis process. Despite these merits, their practical application is hindered by the substantial capacity degradation resulting from unfavorable structural transformations, Mn dissolution and migration. In this study, we systematically investigated the failure mechanisms of P3 cathodes, encompassing Mn dissolution, migration, and the irreversible P3-O3' phase transition, culminating in severe structural collapse. To address these challenges, we proposed an interfacial spinel local interlocking strategy utilizing P3/spinel intergrowth oxide as a proof-of-concept material. As a result, P3/spinel intergrowth oxide cathodes demonstrated enhanced cycling performance. The effectiveness of suppressing Mn migration and maintaining local structure of interfacial spinel local interlocking strategy was validated through depth-etching X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and in situ synchrotron-based X-ray diffraction. This interfacial spinel local interlocking engineering strategy presents a promising avenue for the development of advanced cathode materials for sodium-ion batteries.

11.
Biochem Biophys Res Commun ; 719: 150088, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38740003

ABSTRACT

Berberine (BBR) is a traditional Chinese herb with broad antimicrobial activity. Gut microbiota plays an important role in the metabolism of bile acids and cholesterol. Our study investigated the effects of BBR on alleviating cholesterol and bile acid metabolism disorders induced by high cholesterol diet in mice. Adult male C57BL/6J mice fed with high cholesterol diet (HC) containing 1.25 % cholesterol (HC group) or fed with chow diet containing 0.02 % cholesterol (Chow group) served as controls. BBR50 and BBR100 group mice were fed with HC, and oral BBR daily at doses of 50 or 100 mg/kg respectively for 8 weeks. The results showed that BBR could reshape the homeostasis and composition of gut microbiota. The abundance of Clostridium genera was significantly inhibited by BBR, which resulted in a significant reduction of secondary bile acids within the enterohepatic circulation and a significant lower hydrophobic index of bile acids. The absorption of cholesterol in intestine, the deposition of cholesterol in liver and the excretion of cholesterol in biliary tract were significantly inhibited by BBR, which promoted the unsaturation of cholesterol in bile. These findings suggest the potential utility of BBR as a functional food to alleviate the negative effects of high cholesterol diet.


Subject(s)
Berberine , Bile Acids and Salts , Cholesterol, Dietary , Cholesterol , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Berberine/pharmacology , Bile Acids and Salts/metabolism , Male , Cholesterol/metabolism , Mice , Gastrointestinal Microbiome/drug effects , Cholesterol, Dietary/adverse effects , Cholesterol, Dietary/metabolism , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/drug effects
12.
Chem Sci ; 15(17): 6421-6431, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699264

ABSTRACT

Photodynamic immunotherapy (PDI) is an innovative approach to cancer treatment that utilizes photodynamic therapy (PDT) and photosensitizers (PSs) to induce immunogenic cell death (ICD). However, currently most commonly used PSs have restricted capabilities to generate reactive oxygen species (ROS) via a type-II mechanism under hypoxic environments, which limits their effectiveness in PDI. To overcome this, we propose a novel approach for constructing oxygen independent PSs based on stable organic free-radical molecules. By fine-tuning the characteristics of tris(2,4,6-trichlorophenyl)-methyl (TTM) radicals through the incorporation of electron-donating moieties, we successfully found that TTMIndoOMe could produce substantial amounts of ROS even in hypoxic environments. In vitro experiments showed that TTMIndoOMe could effectively produce O2˙-, kill tumor cells and trigger ICD. Moreover, in vivo experiments also demonstrated that TTMIndoOMe could further trigger anti-tumor immune response and exhibit a superior therapeutic effect compared with PDT alone. Our study offers a promising approach towards the development of next-generation PSs functioning efficiently even under hypoxic conditions and also paves the way for the creation of more effective PSs for PDI.

13.
Int J Ophthalmol ; 17(5): 852-860, 2024.
Article in English | MEDLINE | ID: mdl-38766337

ABSTRACT

AIM: To assess the performance of macular ganglion cell-inner plexiform layer thickness (mGCIPLT) and 10-2 visual field (VF) parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma. METHODS: Totally 127 eyes from 89 participants (36 eyes of 19 healthy participants, 45 eyes of 31 early glaucoma patients and 46 eyes of 39 advanced glaucoma patients) were included. The relationships between the optical coherence tomography (OCT)-derived parameters and VF sensitivity were determined. Patients with early glaucoma were divided into eyes with or without central 10° of the VF damages (CVFDs), and the diagnostic performances of OCT-derived parameters were assessed. RESULTS: In early glaucoma, the mGCIPLT was significantly correlated with 10-2 VF pattern standard deviation (PSD; with average mGCIPLT: ß=-0.046, 95%CI, -0.067 to -0.024, P<0.001). In advanced glaucoma, the mGCIPLT was related to the 24-2 VF mean deviation (MD; with average mGCIPLT: ß=0.397, 95%CI, 0.199 to 0.595, P<0.001), 10-2 VF MD (with average mGCIPLT: ß=0.762, 95%CI, 0.485 to 1.038, P<0.001) and 24-2 VF PSD (with average mGCIPLT: ß=0.244, 95%CI, 0.124 to 0.364, P<0.001). Except for the minimum and superotemporal mGCIPLT, the decrease of mGCIPLT in early glaucomatous eyes with CVFDs was more severe than that of early glaucomatous eyes without CVFDs. The area under the curve (AUC) of the average mGCIPLT (AUC=0.949, 95%CI, 0.868 to 0.982) was greater than that of the average circumpapillary retinal nerve fiber layer thickness (cpRNFLT; AUC=0.827, 95%CI, 0.674 to 0.918) and rim area (AUC=0.799, 95%CI, 0.610 to 0.907) in early glaucomatous eyes with CVFDs versus normal eyes. CONCLUSION: The 10-2 VF and mGCIPLT parameters are complementary to 24-2 VF, cpRNFLT and ONH parameters, especially in detecting early glaucoma with CVFDs and evaluating the severity of advanced glaucoma in group level.

14.
Nat Commun ; 15(1): 4463, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796473

ABSTRACT

Polaritons are well-established carriers of light, electrical signals, and even heat at the nanoscale in the setting of on-chip devices. However, the goal of achieving practical polaritonic manipulation over small distances deeply below the light diffraction limit remains elusive. Here, we implement nanoscale polaritonic in-plane steering and cloaking in a low-loss atomically layered van der Waals (vdW) insulator, α-MoO3, comprising building blocks of customizable stacked and assembled structures. Each block contributes specific characteristics that allow us to steer polaritons along the desired trajectories. Our results introduce a natural materials-based approach for the comprehensive manipulation of nanoscale optical fields, advancing research in the vdW polaritonics domain and on-chip nanophotonic circuits.

15.
Elife ; 122024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587455

ABSTRACT

The color pattern of insects is one of the most diverse adaptive evolutionary phenotypes. However, the molecular regulation of this color pattern is not fully understood. In this study, we found that the transcription factor Bm-mamo is responsible for black dilute (bd) allele mutations in the silkworm. Bm-mamo belongs to the BTB zinc finger family and is orthologous to mamo in Drosophila melanogaster. This gene has a conserved function in gamete production in Drosophila and silkworms and has evolved a pleiotropic function in the regulation of color patterns in caterpillars. Using RNAi and clustered regularly interspaced short palindromic repeats (CRISPR) technology, we showed that Bm-mamo is a repressor of dark melanin patterns in the larval epidermis. Using in vitro binding assays and gene expression profiling in wild-type and mutant larvae, we also showed that Bm-mamo likely regulates the expression of related pigment synthesis and cuticular protein genes in a coordinated manner to mediate its role in color pattern formation. This mechanism is consistent with the dual role of this transcription factor in regulating both the structure and shape of the cuticle and the pigments that are embedded within it. This study provides new insight into the regulation of color patterns as well as into the construction of more complex epidermal features in some insects.


Subject(s)
Bombyx , Lepidoptera , Animals , Bombyx/genetics , Drosophila melanogaster/genetics , Pigmentation/genetics , Drosophila , Larva/genetics , Transcription Factors/genetics
16.
BMC Med Educ ; 24(1): 432, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649943

ABSTRACT

BACKGROUND: Although game-based applications have been used in disaster medicine education, no serious computer games have been designed specifically for training these nurses in an IEMT setting. To address this need, we developed a serious computer game called the IEMTtraining game. In this game, players assume the roles of IEMT nurses, assess patient injuries in a virtual environment, and provide suitable treatment options. METHODS: The design of this study is a retrospective comparative analysis. The research was conducted with 209 nurses in a hospital. The data collection process of this study was conducted at the 2019-2020 academic year. A retrospective comparative analysis was conducted on the pre-, post-, and final test scores of nurses in the IEMT. Additionally, a survey questionnaire was distributed to trainees to gather insights into teaching methods that were subsequently analyzed. RESULTS: There was a significant difference in the overall test scores between the two groups, with the game group demonstrating superior performance compared to the control group (odds ratio = 1.363, p value = 0.010). The survey results indicated that the game group exhibited higher learning motivation scores and lower cognitive load compared with the lecture group. CONCLUSIONS: The IEMT training game developed by the instructor team is a promising and effective method for training nurses in disaster rescue within IEMTs. The game equips the trainees with the necessary skills and knowledge to respond effectively to emergencies. It is easily comprehended, enhances knowledge retention and motivation to learn, and reduces cognitive load.


Subject(s)
Video Games , Humans , Retrospective Studies , Female , Adult , Role Playing , Male , Surveys and Questionnaires
17.
Anal Chem ; 96(15): 5763-5770, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38564366

ABSTRACT

Library matching by comparing carbon-13 nuclear magnetic resonance (13C NMR) spectra with spectral data in the library is a crucial method for compound identification. In our previous paper, we introduced a deep contrastive learning system called CReSS, which used a library that contained more structures. However, CReSS has two limitations: there were no unknown structures in the library, and a redundant library reduces the structure-elucidation accuracy. Herein, we replaced the oversize traditional libraries with focused libraries containing a small number of molecules. A previously generative model, CMGNet, was used to generate focused libraries for CReSS. The combined model achieved a Top-10 accuracy of 54.03% when tested on 6,471 13C NMR spectra. In comparison, CReSS with a random reference structure library achieved an accuracy of only 9.17%. Furthermore, to expand the advantages of the focused libraries, we proposed SAmpRNN, which is a recurrent neural network (RNN). With the large focused library amplified by SAmpRNN, the structure-identification accuracy of the model increased in 70.0% of the 30 random example cases. In general, cross-modal retrieval between 13C NMR spectra and structures based on focused libraries (CFLS) achieved high accuracy and provided more accurate candidate structures than traditional libraries for compound identification.


Subject(s)
Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
18.
Zhongguo Zhong Yao Za Zhi ; 49(3): 836-841, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621887

ABSTRACT

This study aims to construct the element relationship and extension path of clinical evidence knowledge map with Chinese patent medicine, providing basic technical support for the formation and transformation of the evidence chain of Chinese patent medicine and providing collection, induction, and summary schemes for massive and disorganized clinical data. Based on the elements of evidence-based PICOS, the conventional construction methods of knowledge graph were collected and summarized. Firstly, the data entities related to Chinese patent medicine were classified, and entity linking was performed(disambiguation). Secondly, the study associated and classified the attribute information of the data entity. Finally, the logical relationship between entities was constructed, and then the element relationship and extension path of the knowledge map conforming to the characteristics of clinical evidence of Chinese patent medicine were summarized. The construction of the clinical evidence knowledge map of Chinese patent medicine was mainly based on process design and logical structure, and the element relationship of the knowledge map was expressed according to the PICOS principle and evidence level. The extension path crossed three levels(model layer, data layer application, and new evidence application), and the study gradually explored the path from disease, core evaluation indicators, Chinese patent medicine, core prescriptions, syndrome and treatment rules, and medical case comparison(evolution law) to new drug research and development. In this study, the top-level design of the construction of the clinical evidence knowledge map of Chinese patent medicine has been clarified, but it still needs the joint efforts of interdisciplinary disciplines. With the continuous improvement of the map construction technology in line with the characteristics of TCM, the study can provide necessary basic technical support and reference for the development of the TCM discipline.


Subject(s)
Drugs, Chinese Herbal , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Nonprescription Drugs/therapeutic use , Technology , Data Mining/methods
19.
Insect Sci ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622976

ABSTRACT

Feeding behavior is critical for insect survival and fitness. Most researchers have explored the molecular basis of feeding behaviors by identifying and elucidating the function of olfactory receptors (ORs) and gustatory receptors (GRs). Other types of genes, such as transcription factors, have rarely been investigated, and little is known about their potential roles. The silkworm (Bombyx mori) is a well-studied monophagic insect which primarily feeds on mulberry leaves, but the genetic basis of its monophagy is still not understood. In this report, we focused on a transcription factor encoded by the Zfh3 gene, which is highly expressed in the silkworm central and peripheral nervous systems, including brain, antenna, and maxilla. To investigate its function, Zfh3 was abrogated using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) mutagenesis. Since Zfh3 knockout homozygotes are not viable, we studied feeding behavior in heterozygotes, and found that disruption of Zfh3 affects both gustation and olfaction. Mutant larvae lose preference for mulberry leaves, acquire the ability to consume an expanded range of diets, and exhibit improved adaptation to the M0 artificial diet, which contains no mulberry leaves. These results provide the first demonstration that a transcription factor modulates feeding behaviors in an insect.

20.
Chem Sci ; 15(14): 5192-5200, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577355

ABSTRACT

Layered transition metal oxides (NaxTMO2) possess attractive features such as large specific capacity, high ionic conductivity, and a scalable synthesis process, making them a promising cathode candidate for sodium-ion batteries (SIBs). However, NaxTMO2 suffer from multiple phase transitions and Na+/vacancy ordering upon Na+ insertion/extraction, which is detrimental to their electrochemical performance. Herein, we developed a novel cathode material that exhibits an abnormal P2-type structure at a stoichiometric content of Na up to 1. The cathode material delivers a reversible capacity of 108 mA h g-1 at 0.2C and 97 mA h g-1 at 2C, retaining a capacity retention of 76.15% after 200 cycles within 2.0-4.3 V. In situ diffraction studies demonstrated that this material exhibits an absolute solid-solution reaction with a low volume change of 0.8% during cycling. This near-zero-strain characteristic enables a highly stabilized crystal structure for Na+ storage, contributing to a significant improvement in battery performance. Overall, this work presents a simple yet effective approach to realizing high Na content in P2-type layered oxides, offering new opportunities for high-performance SIB cathode materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...