Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Main subject
Publication year range
1.
Langmuir ; 39(46): 16315-16327, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37881899

ABSTRACT

The transportation of droplets on solid surfaces has received significant attention owing to its importance in biochemical analysis and microfluidics. In this study, we propose a novel strategy for controlling droplet motion by combining an asymmetric structure and infused lubricating oil on a vibrating substrate. The transportation of droplets with volumes ranging from 10 to 90 µL was realized, and the movement speed could be adjusted from 1.45 to 10.87 mm/s. Typical droplet manipulations, including droplet transportation along a long trajectory and selective movement of multiple droplets, were successfully demonstrated. Through experimental exploration and theoretical analysis, we showed that the adjustment of droplet transport velocity involves an intricate interaction among the Ohnesorge number, droplet volume, and input amplitude. It can potentially be used for the more complex manipulation of liquid droplets in microfluidic and biochemical analysis systems.

2.
Ultrason Sonochem ; 64: 104969, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31999989

ABSTRACT

The dynamics of a micrometer-sized bubble pair in water near a rigid boundary under standing ultrasonic wave excitation is investigated in this study. The viscous effect in the boundary layer at the air-water interface is considered following the viscous correction model. The evolution of the bubble surface at the collapsing stage of the bubble pair is presented for different parameter sets. The field pressure near the rigid boundary, which is induced by the oscillating bubble pair, and the high-speed water jet at the collapse stage, form the main focus of the analysis. This reveals that a horizontal configuration of the bubble pair retards the strength of the bubble jet towards the boundary, whilst a vertical configuration, especially with differently-sized bubbles, can enhance the bubble collapse. This study may help to understand the interaction of multiple bubbles in an acoustic field and its application to surface cleaning.

3.
Langmuir ; 35(22): 7205-7211, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31083953

ABSTRACT

Developing drag reduction techniques has attracted great attention because of their need in practical applications. However, many of the proposed strategies exhibit some inevitable limitations, especially for long period of adhibition. In this work, the dynamic but stable drag reduction effect of superhydrophilic hydrogel-coated iron sphere falling freely in a cylindrical water tank was investigated. The absolute instantaneous velocities and displacements of either the hydrogel-encapsulated or unmodified iron sphere falling freely in water were monitored via a high-speed video. It was revealed that, in the range of Reynolds number from 104 to 106, the optimized hydrogel-coated iron sphere with uniform stability could reduce the resistance by up to 40%, which was mainly due to the boundary slip of water and the delayed boundary separation that resulted from the coated hydrogel. Besides, the deliberate experiments and analysis further indicated that the superhydrophilic hydrogel layer accompanied by the emergence of the drag crisis has largely effected the distribution of flow field at the boundary around the sphere. More importantly, the drag reduction behavior based on the proposed method was thermodynamically stable and resistant to external stimulus, including fluidic oscillator and hydrodynamic pressure. The effective long-term drag reduction performance of the hydrophilic substrate can be expected, correspondingly, and also provides a novel preliminary protocol and avenues for the development of durable drag reduction technologies.

4.
Sci Adv ; 3(9): e1603288, 2017 09.
Article in English | MEDLINE | ID: mdl-28879234

ABSTRACT

Superhydrophobic surfaces have the potential to reduce the viscous drag of liquids by significantly decreasing friction at a solid-liquid interface due to the formation of air layers between solid walls and interacting liquids. However, the trapped air usually becomes unstable due to the finite nature of the domain over which it forms. We demonstrate for the first time that a large surface energy barrier can be formed to strongly pin the three-phase contact line of air/water/solid by covering the inner rotor of a Taylor-Couette flow apparatus with alternating superhydrophobic and hydrophilic circumferential strips. This prevents the disruption of the air layer, which forms stable and continuous air rings. The drag reduction measured at the inner rotor could be as much as 77.2%. Moreover, the air layers not only significantly reduce the strength of Taylor vortexes but also influence the number and position of the Taylor vortex pairs. This has strong implications in terms of energy efficiency maximization for marine applications and reduction of drag losses in, for example, fluid transport in pipelines and carriers.

5.
J Chem Phys ; 146(3): 034701, 2017 Jan 21.
Article in English | MEDLINE | ID: mdl-28109239

ABSTRACT

The slip behavior of simple fluids over atomically smooth surfaces was investigated in a wide range of wall-fluid interaction (WFI) energies at low shear rates using non-equilibrium molecular dynamics simulations. The relationship between slip and WFI shows two regimes (the strong-WFI and weak-WFI regimes): as WFI decreases, the slip length increases in the strong-WFI regime and decreases in the weak-WFI regime. The critical value of WFI energy that separates these regimes increases with temperature, but it remains unaffected by the driving force. The mechanism of slip was analyzed by examining the density-weighted average energy barrier (ΔE¯) encountered by fluid atoms in the first fluid layer (FFL) during their hopping between minima of the surface potential. We demonstrated that the relationship between slip and WFI can be rationalized by considering the effect of the fluid density distribution in the FFL on ΔE¯ as a function of the WFI energy. Moreover, the dependence of the slip length on WFI and temperature is well correlated with the exponential factor exp(-ΔE¯/(kBT)), which also determines the critical value of WFI between the strong-WFI and weak-WFI regimes.

6.
Phys Rev E ; 96(3-1): 033110, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29346922

ABSTRACT

Molecular dynamics simulations are used to investigate the rate and temperature dependence of the slip length in thin liquid films confined by smooth, thermal substrates. In our setup, the heat generated in a force-driven flow is removed by the thermostat applied on several wall layers away from liquid-solid interfaces. We found that for both high and low wall-fluid interaction (WFI) energies, the temperature of the fluid phase rises significantly as the shear rate increases. Surprisingly, with increasing shear rate, the slip length approaches a constant value from above for high WFI energies and from below for low WFI energies. The two distinct trends of the rate-dependent slip length are rationalized by examining S(G_{1}), the height of the main peak of the in-plane structure factor of the first fluid layer (FFL) together with D_{WF}, which is the average distance between the wall and FFL. The results of numerical simulations demonstrate that reduced values of the structure factor, S(G_{1}), correlate with the enhanced slip, while smaller distances D_{WF} indicate that fluid atoms penetrate deeper into the surface potential leading to larger friction and smaller slip. Interestingly, at the lowest WFI energy, the combined effect of the increase of S(G_{1}) and decrease of D_{WF} with increasing shear rate results in a dramatic reduction of the slip length.

7.
Phys Rev E ; 94(2-1): 023311, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27627416

ABSTRACT

The primary and key task of binary fluid flow modeling is to track the interface with good accuracy, which is usually challenging due to the sharp-interface limit and numerical dispersion. This article concentrates on further development of the conservative Allen-Cahn equation (ACE) [Geier et al., Phys. Rev. E 91, 063309 (2015)10.1103/PhysRevE.91.063309] under the framework of the lattice Boltzmann method (LBM), with incorporation of the incompressible hydrodynamic equations [Liang et al., Phys. Rev. E 89, 053320 (2014)10.1103/PhysRevE.89.053320]. Utilizing a modified equilibrium distribution function and an additional source term, this model is capable of correctly recovering the conservative ACE through the Chapman-Enskog analysis. We also simulate four phase-tracking benchmark cases, including one three-dimensional case; all show good accuracy as well as low numerical dispersion. By coupling the incompressible hydrodynamic equations, we also simulate layered Poiseuille flow and the Rayleigh-Taylor instability, illustrating satisfying performance in dealing with complex flow problems, e.g., high viscosity ratio, high density ratio, and high Reynolds number situations. The present work provides a reliable and efficient solution for binary flow modeling.

8.
Sci Rep ; 6: 29786, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27430188

ABSTRACT

A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed.

9.
Langmuir ; 32(29): 7339-45, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27359261

ABSTRACT

The directional transportation of droplets on solid surfaces is essential in a wide range of engineering applications. It is convenient to guide liquid droplets in a given direction by utilizing the gradient of wettability, by which the binding forces can be produced. In contrast to the mass-loss transportation of a droplet moving along hydrophilic paths on a horizontal superhydrophobic surface, we present no-loss transportation by fabricating a hydrophobic path on the same surface under tangential wind. In experimental exploration and theoretical analysis, the conditions of no-loss transportation of a droplet are mainly considered. We demonstrate that the lower (or upper) critical wind velocity, under which the droplet starts on the path (or is derailed from the path), is determined by the width of the path, the length of the contact area in the direction parallel to the path, the drift angle between the path and the wind direction, and the surface wettability of the pattern. Meanwhile, the no-loss transportation of water droplets along the desired path zigzagging on a superhydrophobic surface can be achieved steadily under appropriate conditions. We anticipate that such robust no-loss transportation will find an extensive range of applications.

10.
Phys Chem Chem Phys ; 17(21): 13800-3, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25946666

ABSTRACT

Superhydrophobic patterns were fabricated on hydrophilic surfaces by selective painting. The impinging process of water droplets on these hybrid surfaces was investigated. The droplet can be split by impinging on the hydrophilic surface with a single stripe at a high velocity. The time to split the droplet is independent of the impact velocity and it is smaller than the contact time of a droplet impinging on the fully superhydrophobic surface. The volume ratios of the split mini-droplets could be precisely controlled by adjusting the landing position of the original droplet. The droplet could be split uniformly into more mini-marbles by increasing the stripe numbers.


Subject(s)
Water/chemistry , Glass/chemistry , Hydrophobic and Hydrophilic Interactions , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...