Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Research (Wash D C) ; 6: 0176, 2023.
Article in English | MEDLINE | ID: mdl-37426474

ABSTRACT

Effective condition monitoring and fault diagnosis of bearings can not only maximize the life of rolling bearings and prevent unexpected shutdowns caused by equipment failures but also eliminate unnecessary costs and waste caused by excessive maintenance. However, the existing deep-learning-based bearing fault diagnosis models have the following defects. First of all, these models have a large demand for fault data. Second, the previous models only consider that single-scale features are generally less effective in diagnosing bearing faults. Therefore, we designed a bearing fault data collection platform based on the Industrial Internet of Things, which is used to collect bearing status data from sensors in real time and feed it back into the diagnostic model. On the basis of this platform, we propose a bearing fault diagnosis model based on deep generative models with multiscale features (DGMMFs) to solve the above problems. The DGMMF model is a multiclassification model, which can directly output the abnormal type of the bearing. Specifically, the DGMMF model uses 4 different variational autoencoder models to augment the bearing data and integrates features of different scales. Compared with single-scale features, these multiscale features contain more information and can perform better. Finally, we conducted a large number of related experiments on the real bearing fault datasets and verified the effectiveness of the DGMMF model using multiple evaluation metrics. The DGMMF model has achieved the highest value under all metrics, among which the value of precision is 0.926, the value of recall is 0.924, the value of accuracy is 0.926, and the value of F1 score is 0.925.

2.
Front Plant Sci ; 14: 1102855, 2023.
Article in English | MEDLINE | ID: mdl-37035048

ABSTRACT

Reservoir operation is an important part of basin water resources management. The rational use of reservoir operation scheme can not only enhance the capacity of flood control and disaster reduction in the basin, but also improve the efficiency of water use and give full play to the comprehensive role the reservoir. The conventional decision-making method of reservoir operation scheme is computationally large, subjectivity and difficult to capture the nonlinear relationship. To solve these problems, this paper proposes a reservoir operation scheme decision-making model IWGAN-IWOA-CNN based on artificial intelligence and deep learning technology. In view of the lack of data in the original reservoir operation scheme and the limited improvement of data characteristics by the traditional data augmentation algorithm, an improved generative adversarial network algorithm (IWGAN) is proposed. IWGAN uses the loss function which integrates Wasserstein distance, gradient penalty and difference item, and dynamically adds random noise in the process of model training. The whale optimization algorithm is improved by introducing Logistic chaotic mapping to initialize population, non-linear convergence factor and adaptive weights, and Levy flight perturbation strategy. The improved whale optimization algorithm (IWOA) is used to optimize hyperparameters of convolutional neural networks (CNN), so as to obtain the best parameters for model prediction. The experimental results show that the data generated by IWGAN has certain representation ability and high quality; IWOA has faster convergence speed, higher convergence accuracy and better stability; IWGAN-IWOA-CNN model has higher prediction accuracy and reliability of scheme selection.

SELECTION OF CITATIONS
SEARCH DETAIL
...