Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Brain Topogr ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955901

ABSTRACT

Methamphetamine (MA) is a neurological drug, which is harmful to the overall brain cognitive function when abused. Based on this property of MA, people can be divided into those with MA abuse and healthy people. However, few studies to date have investigated automatic detection of MA abusers based on the neural activity. For this reason, the purpose of this research was to investigate the difference in the neural activity between MA abusers and healthy persons and accordingly discriminate MA abusers. First, we performed event-related potential (ERP) analysis to determine the time range of P300. Then, the wavelet coefficients of the P300 component were extracted as the main features, along with the time and frequency domain features within the selected P300 range to classify. To optimize the feature set, F_score was used to remove features below the average score. Finally, a Bidirectional Long Short-term Memory (BiLSTM) network was performed for classification. The experimental result showed that the detection accuracy of BiLSTM could reach 83.85%. In conclusion, the P300 component of EEG signals of MA abusers is different from that in normal persons. Based on this difference, this study proposes a novel way for the prevention and diagnosis of MA abuse.

2.
Eur J Radiol Open ; 12: 100550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38314183

ABSTRACT

Objectives: To determine whether contrast-enhanced CT radiomics features can preoperatively predict lymphovascular invasion (LVI) and perineural invasion (PNI) in gastric cancer (GC). Methods: A total of 148 patients were included in the LVI group, and 143 patients were included in the PNI group. Three predictive models were constructed, including clinical, radiomics, and combined models. A nomogram was developed with clinical risk factors to predict LVI and PNI status. The predictive performance of the three models was mainly evaluated using the mean area under the curve (AUC). The performance of three predictive models was assessed concerning calibration and clinical usefulness. Results: In the LVI group, the predictive power of the combined model (AUC=0.871, 0.822) outperformed the clinical model (AUC=0.792, 0.728) and the radiomics model (AUC=0.792, 0.728) in both the training and testing cohorts. In the PNI group, the combined model (AUC=0.834, 0.828) also had better predictive power than the clinical model (AUC=0.764, 0.632) and the radiomics model (AUC=0.764, 0.632) in both the training and testing cohorts. The combined models also showed good calibration and clinical usefulness for LVI and PNI prediction. Conclusion: CECT-based radiomics analysis might serve as a non-invasive method to predict LVI and PNI status in GC.

3.
Comput Methods Programs Biomed ; 240: 107679, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37364366

ABSTRACT

BACKGROUND AND OBJECTIVE: The sheer volume of data generated by population imaging studies is unparalleled by current capabilities to extract objective and quantitative cardiac phenotypes; subjective and time-consuming manual image analysis remains the gold standard. Automated image analytics to compute quantitative imaging biomarkers of cardiac function are desperately needed. Data volumes and their variability pose a challenge to most state-of-the-art methods for endo- and epicardial contours, which lack robustness when applied to very large datasets. Our aim is to develop an analysis pipeline for the automatic quantification of cardiac function from cine magnetic resonance imaging data. METHOD: This work adopt 4,638 cardiac MRI cases coming from UK Biobank with ground truth available for left and RV contours. A hybrid and robust algorithm is proposed to improve the accuracy of automatic left and right ventricle segmentation by harnessing the localization accuracy of deep learning and the morphological accuracy of 3D-ASM (three-dimensional active shape models). The contributions of this paper are three-fold. First, a fully automatic method is proposed for left and right ventricle initialization and cardiac MRI segmentation by taking full advantage of spatiotemporal constraint. Second, a deeply supervised network is introduced to train and segment the heart. Third, the 3D-ASM image search procedure is improved by combining image intensity models with convolutional neural network (CNN) derived distance maps improving endo- and epicardial edge localization. RESULTS: The proposed architecture outperformed the state of the art for cardiac MRI segmentation from UK Biobank. The statistics of RV landmarks detection errors for Triscuspid valve and RV apex are 4.17 mm and 5.58 mm separately. The overlap metric, mean contour distance, Hausdorff distance and cardiac functional parameters are calculated for the LV (Left Ventricle) and RV (Right Ventricle) contour segmentation. Bland-Altman analysis for clinical parameters shows that the results from our automated image analysis pipelines are in good agreement with results from expert manual analysis. CONCLUSIONS: Our hybrid scheme combines deep learning and statistical shape modeling for automatic segmentation of the LV/RV from cardiac MRI datasets is effective and robust and can compute cardiac functional indexes from population imaging.


Subject(s)
Heart Ventricles , Magnetic Resonance Imaging , Heart Ventricles/diagnostic imaging , Heart , Magnetic Resonance Imaging, Cine/methods , Neural Networks, Computer , Algorithms , Image Processing, Computer-Assisted/methods
4.
Quant Imaging Med Surg ; 13(5): 3140-3149, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37179955

ABSTRACT

Background: The American Association of Physicists in Medicine (AAPM) report 293 is more accurate than report 220 in evaluating the absorbed radiation dose during head computed tomography (CT) examination. We aimed to investigate the associations between age, head circumference (HC), the conversion factor (f293), and specific-size dose estimation (SSDE293) during these procedures. The rapid radiation dose was also estimated based on the AAPM report 293. Methods: In this retrospective, cross-sectional study, unenhanced CT images of the head were retrospectively collected from 1,222 participants from Union Hospital and Hubei Cancer Hospital between December 2018 and September 2019. Scan parameters, including age, HC, water-equivalent diameter (DW), and volumetric computed tomography dose index (CTDIvol), were generated automatically using indigenously-developed image processing software. The corresponding f293 and SSDE293 were calculated according to the AAPM report 293. The analyses were performed using linear regression. Results: In the younger group, age and HC were significantly negatively correlated with SSDE293 (r=-0.33 and -0.44, respectively; both P values ≤0.001). No significant correlation was reported between age, HC, and SSDE293 in the older group. Moreover, age was significantly negatively associated with f293 in the younger and older groups (r=-0.80 and -0.13, respectively; both P values ≤0.001). A significantly negative association was seen between f293 and increased HC in both age groups (r=-0.92 and -0.82, respectively; both P values ≤0.001). Conclusions: The HC of patients was associated with head conversion. HC is a feasible indicator for rapidly estimating the radiation dose in head CT examinations based on the AAPM report 293.

5.
PLoS One ; 9(12): e114760, 2014.
Article in English | MEDLINE | ID: mdl-25500580

ABSTRACT

Segmentation of the left ventricle is very important to quantitatively analyze global and regional cardiac function from magnetic resonance. The aim of this study is to develop a novel algorithm for segmenting left ventricle on short-axis cardiac magnetic resonance images (MRI) to improve the performance of computer-aided diagnosis (CAD) systems. In this research, an automatic segmentation method for left ventricle is proposed on the basis of local binary fitting (LBF) model and dynamic programming techniques. The validation experiments are performed on a pool of data sets of 45 cases. For both endo- and epi-cardial contours of our results, percentage of good contours is about 93.5%, the average perpendicular distance are about 2 mm. The overlapping dice metric is about 0.91. The regression and determination coefficient between the experts and our proposed method on the LV mass is 1.038 and 0.9033, respectively; they are 1.076 and 0.9386 for ejection fraction (EF). The proposed segmentation method shows the better performance and has great potential in improving the accuracy of computer-aided diagnosis systems in cardiovascular diseases.


Subject(s)
Algorithms , Heart Ventricles , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Models, Theoretical , Automation , Diagnosis, Computer-Assisted , Heart Diseases/diagnosis , Humans , Regression Analysis
6.
Magn Reson Imaging ; 31(4): 575-84, 2013 May.
Article in English | MEDLINE | ID: mdl-23245907

ABSTRACT

Segmentation of the left ventricle from cardiac magnetic resonance images (MRI) is very important to quantitatively analyze global and regional cardiac function. The aim of this study is to develop a novel and robust algorithm which can improve the accuracy of automatic left ventricle segmentation on short-axis cardiac MRI. The database used in this study consists of three data sets obtained from the Sunnybrook Health Sciences Centre. Each data set contains 15 cases (4 ischemic heart failures, 4 non-ischemic heart failures, 4 left ventricle (LV) hypertrophies and 3 normal cases). Three key techniques are developed in this segmentation algorithm: (1) ray scanning approach is designed for segmentation of images with left ventricular outflow tract (LVOT), (2) a region restricted technique is employed for epicardial contour extraction, and (3) an edge map with non-maxima gradient suppression approach is put forward to improve the dynamic programming to derive the epicardial boundary. The validation experiments were performed on a pool of data sets of 45 cases. For both endo- and epi-cardial contours of our results, percentage of good contours is about 91%, the average perpendicular distance is about 2mm. The overlapping dice metric is about 0.92. The regression and determination coefficient between the experts and our proposed method on the ejection fraction (EF) is 1.01 and 0.9375, respectively; they are 0.9 and 0.8245 for LV mass. The proposed segmentation method shows the better performance and is very promising in improving the accuracy of computer-aided diagnosis systems in cardiovascular diseases.


Subject(s)
Heart Ventricles/pathology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Models, Cardiovascular , Pattern Recognition, Automated/methods , Ventricular Dysfunction, Left/pathology , Algorithms , Computer Simulation , Data Interpretation, Statistical , Humans , Models, Statistical , Normal Distribution , Reproducibility of Results , Sensitivity and Specificity
7.
Acad Radiol ; 19(6): 723-31, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22465463

ABSTRACT

RATIONALE AND OBJECTIVES: Segmentation of the left ventricle (LV) is very important in the assessment of cardiac functional parameters. The aim of this study is to develop a novel and robust algorithm which can improve the accuracy of automatic LV segmentation on short-axis cardiac magnetic resonance images (MRI). MATERIALS AND METHODS: The database used in this study consists of 45 cases obtained from the Sunnybrook Health Sciences Centre. The 45 cases contain 12 ischemic heart failures, 12 non-ischemic heart failures, 12 LV hypertrophies, and 9 normal cases. Three key techniques are developed in this segmentation algorithm: 1) topological stable-state thresholding method is proposed to refine the endocardial contour, 2) an edge map with non-maxima gradient suppression approach, and 3) a region-restricted technique that is proposed to improve the dynamic programming to derive the epicardial boundary. RESULTS: The validation experiments were performed on a pool of data sets of 45 cases. For both endo- and epicardial contours of our results, percentage of good contours is about 91%, the average perpendicular distance is about 2 mm, and the overlapping dice metric is about 0.91. The regression and determination coefficient for the experts and our proposed method on the ejection fraction is 1.05 and 0.9048, respectively; they are 0.98 and 0.8221 for LV mass. CONCLUSIONS: An automatic method using topological stable-state thresholding and region restricted dynamic programming has been proposed to segment left ventricle in short-axis cardiac MRI. Evaluation results indicate that the proposed segmentation method can improve the accuracy and robust of left ventricle segmentation. The proposed segmentation approach shows the better performance and has great potential in improving the accuracy of computer-aided diagnosis systems in cardiovascular diseases.


Subject(s)
Algorithms , Heart Ventricles/pathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Pattern Recognition, Automated/methods , Ventricular Dysfunction, Left/pathology , Adult , Aged , Female , Humans , Image Enhancement/methods , Male , Middle Aged , Programming, Linear , Reproducibility of Results , Sensitivity and Specificity
8.
J Huazhong Univ Sci Technolog Med Sci ; 32(1): 119-123, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22282257

ABSTRACT

The accuracy and repeatability of computer aided cervical vertebra landmarking (CACVL) were investigated in cephalogram. 120 adolescents (60 boys, 60 girls) aged from 9.1 to 17.2 years old were randomly selected. Twenty-seven landmarks from the second to fifth cervical vertebrae on the lateral cephalogram were identified. In this study, the system of CACVL was developed and used to identify and calculate the landmarks by fast marching method and parabolic curve fitting. The accuracy and repeatability in CACVL group were compared with those in two manual landmarking groups [orthodontic experts (OE) group and orthodontic novices (ON) group]. The results showed that, as for the accuracy, there was no significant difference between CACVL group and OE group no matter in x-axis or y-axis (P>0.05), but there was significant difference between CACVL group and ON group, as well as OE group and ON group in both axes (P<0.05). As for the repeatability, CACVL group was more reliable than OE group and ON group in both axes. It is concluded that CACVL has the same or higher accuracy, better repeatability and less workload than manual landmarking methods. It's reliable for cervical parameters identification on the lateral cephalogram and cervical vertebral maturation prediction in orthodontic practice and research.


Subject(s)
Algorithms , Anatomic Landmarks/diagnostic imaging , Cephalometry/methods , Cervical Vertebrae/diagnostic imaging , Pattern Recognition, Automated/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Adolescent , Child , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-248550

ABSTRACT

The accuracy and repeatability of computer aided cervical vertebra landmarking (CACVL) were investigated in cephalogram.120 adolescents (60 boys,60 girls) aged from 9.1 to 17.2 years old were randomly selected.Twenty-seven landmarks from the second to fifth cervical vertebrae on the lateral cephalogram.were identified.In this study,the system of CACVL was developed and used to identify and calculate the landmarks by fast marching method and parabolic curve fitting.The accuracy and repeatability in CACVL group were compared with those in two manual landmarking groups [orthodontic experts (OE) group and orthodontic novices (ON) group].The results showed that,as for the accu racy,there was no significant difference between CACVL group and OE group no matter in x-axis or y-axis (P>0.05),but there was significant difference between CACVL group and ON group,as well as OE group and ON group in both axes (P<0.05).As for the repeatability,CACVL group was more reliable than OE group and ON group in both axes.It is concluded that CACVL has the same or higher accuracy,better repeatability and less workload than manual landmarking methods.It's reliable for cervical parameters identification on the lateral cephalogram and cervical vertebral maturation prediction in orthodontic practice and research.

SELECTION OF CITATIONS
SEARCH DETAIL
...