Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
J Nanobiotechnology ; 22(1): 275, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778401

ABSTRACT

BACKGROUND: Acute gouty is caused by the excessive accumulation of Monosodium Urate (MSU) crystals within various parts of the body, which leads to a deterioration of the local microenvironment. This degradation is marked by elevated levels of uric acid (UA), increased reactive oxygen species (ROS) production, hypoxic conditions, an upsurge in pro-inflammatory mediators, and mitochondrial dysfunction. RESULTS: In this study, we developed a multifunctional nanoparticle of polydopamine-platinum (PDA@Pt) to combat acute gout by leveraging mild hyperthermia to synergistically enhance UA degradation and anti-inflammatory effect. Herein, PDA acts as a foundational template that facilitates the growth of a Pt shell on the surface of its nanospheres, leading to the formation of the PDA@Pt nanomedicine. Within this therapeutic agent, the Pt nanoparticle catalyzes the decomposition of UA and actively breaks down endogenous hydrogen peroxide (H2O2) to produce O2, which helps to alleviate hypoxic conditions. Concurrently, the PDA component possesses exceptional capacity for ROS scavenging. Most significantly, Both PDA and Pt shell exhibit absorption in the Near-Infrared-II (NIR-II) region, which not only endow PDA@Pt with superior photothermal conversion efficiency for effective photothermal therapy (PTT) but also substantially enhances the nanomedicine's capacity for UA degradation, O2 production and ROS scavenging enzymatic activities. This photothermally-enhanced approach effectively facilitates the repair of mitochondrial damage and downregulates the NF-κB signaling pathway to inhibit the expression of pro-inflammatory cytokines. CONCLUSIONS: The multifunctional nanomedicine PDA@Pt exhibits exceptional efficacy in UA reduction and anti-inflammatory effects, presenting a promising potential therapeutic strategy for the management of acute gout.


Subject(s)
Gout , Indoles , Polymers , Reactive Oxygen Species , Uric Acid , Gout/drug therapy , Gout/metabolism , Gout/therapy , Reactive Oxygen Species/metabolism , Animals , Mice , Polymers/chemistry , Indoles/chemistry , Indoles/pharmacology , Nanoparticles/chemistry , Platinum/chemistry , Platinum/pharmacology , Platinum/therapeutic use , Humans , Hydrogen Peroxide/metabolism , Hyperthermia, Induced/methods , RAW 264.7 Cells , Photothermal Therapy/methods , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Male
2.
Bioorg Chem ; 147: 107381, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669781

ABSTRACT

The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 µM, which is less potent than benzbromarone (2.01 ± 0.36 µM) but more potent than lesinurad (10.36 ± 1.23 µM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 µM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 µM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.


Subject(s)
Dose-Response Relationship, Drug , Enzyme Inhibitors , Hyperuricemia , Organic Anion Transporters , Organic Cation Transport Proteins , Hyperuricemia/drug therapy , Humans , Animals , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Structure-Activity Relationship , Molecular Structure , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transport Proteins/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Urate Oxidase/chemistry , Drug Discovery , Molecular Docking Simulation , Mice , Male , Gallic Acid/chemistry , Gallic Acid/pharmacology , Gallic Acid/analogs & derivatives , Rats, Sprague-Dawley
3.
iScience ; 26(6): 106775, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37213227

ABSTRACT

The strategies for eliminating excess reactive oxygen species (ROS) or suppressing inflammatory responses on the wound bed have proven effective for diabetic wound healing. In this work, a zinc-based nanoscale metal-organic framework (NMOF) functions as a carrier to deliver natural product berberine (BR) to form BR@Zn-BTB nanoparticles, which was, in turn, further encapsulated by hydrogel with ROS scavenging ability to yield a composite system of BR@Zn-BTB/Gel (denoted as BZ-Gel). The results show that BZ-Gel exhibited the controlled release of Zn2+ and BR in simulated physiological media to efficiently eliminated ROS and inhibited inflammation and resulted in a promising antibacterial effect. In vivo experiments further proved that BZ-Gel significantly inhibited the inflammatory response and enhanced collagen deposition, as well as to re-epithelialize the skin wound to ultimately promote wound healing in diabetic mice. Our results indicate that the ROS-responsive hydrogel coupled with BR@Zn-BTB synergistically promotes diabetic wound healing.

4.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(7): 988-994, 2020 Jul 30.
Article in Chinese | MEDLINE | ID: mdl-32895166

ABSTRACT

OBJECTIVE: To study the anti- fibrotic effect of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) and explore the mechanism. METHODS: Twenty-four C57 BL/6 mice were divided into 4 groups (n=6), including the control group treated with intratracheal injection of saline (3 mg/kg); lung fibrosis model group with intratracheal injection of 1.5 mg/mL bleomycin solution (prepared with saline, 3 mg/kg); EXOs1 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 µg/250 µL, given by tail vein injection on the next day after modeling); and EXOs2 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 µg/250 µL, given by tail vein injection on the 10th day after modeling). At 21 days after modeling, pulmonary index, lung tissue pathology and collagen deposition in the mice were assessed using HE staining and Masson staining. The expression level of TGF-ß1 was detected using ELISA, and vimentin, E-cadherin and phosphorylated Smad2/3 (p-Smad2/3) were detected using immunohistochemical staining. CCK8 assay was used to evaluate the effect of hUCMSCEXOs on the viability of A549 cells, and Western blotting was used to detect the expression levels of p-Smad2/3, vimentin, and E-cadherin in the cells. RESULTS: Compared with those in the model group, the mice treated with hUCMSC-EXOs showed significantly reduced the pulmonary index (P < 0.05), collagen deposition, lung tissue pathologies, lowered expressions of TGF-ß1 (P < 0.05), vimentin, and p-Smad2/3 and increased expression of E-cadherin. hUCMSC-EXOs given on the second day produced more pronounced effect than that given on the 11th day (P < 0.05). CCK8 assay results showed that hUCMSC-EXOs had no toxic effects on A549 cells (P > 0.05). Western blotting results showed that hUCMSC-EXOs treatment significantly increased the expression of E-cadherin and decreased the expressions of p-Smad2/3 and vimentin in the cells. CONCLUSIONS: hUCMSC-EXOs can alleviate pulmonary fibrosis in mice by inhibiting epithelialmesenchymal transition activated by the TGF-ß1/Smad2/3 signaling pathway, and the inhibitory effect is more obvious when it is administered on the second day after modeling.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Pulmonary Fibrosis , Animals , Epithelial-Mesenchymal Transition , Humans , Mice , Transforming Growth Factor beta1 , Umbilical Cord
5.
J Cell Mol Med ; 24(13): 7082-7093, 2020 07.
Article in English | MEDLINE | ID: mdl-32492261

ABSTRACT

Stem cell exosomes are nanoscale membrane vesicles released from stem cells of various origins that can regulate signal transduction pathways between liver cells, and their functions in intercellular communication have been recognized. Due to their natural substance transport properties and excellent biocompatibility, exosomes can also be used as drug carriers to release a variety of substances, which has great prospects in the treatment of critical and incurable diseases. Different types of stem cell exosomes have been used to study liver diseases. Due to current difficulties in the treatment of acute liver failure (ALF), this review will outline the potential of stem cell exosomes for ALF treatment. Specifically, we reviewed the pathogenesis of acute liver failure and the latest progress in the use of stem cell exosomes in the treatment of ALF, including the role of exosomes in inhibiting the ALF inflammatory response and regulating signal transduction pathways, the advantages of stem cell exosomes and their use as a drug-loading system, and their pre-clinical application in the treatment of ALF. Finally, the clinical research status of stem cell therapy for ALF and the current challenges of exosome clinical transformation are summarized.


Subject(s)
Drug Delivery Systems , Exosomes/metabolism , Liver Failure, Acute/therapy , Mesenchymal Stem Cells/metabolism , Clinical Trials as Topic , Humans , Liver Failure, Acute/immunology , Signal Transduction
6.
Life Sci ; 246: 117401, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32035931

ABSTRACT

AIMS: The management of acute liver failure (ALF) is a major challenge worldwide. The current study aimed to determine the therapeutic potential of TNF-α pretreatment of umbilical cord mesenchymal stem cell-derived exosomes (T-Exo) in ALF. MAIN METHODS: Here, we enriched T-Exo and untreated exosomes (Exo), them were measured by nanoparticle tracking analysis (NTA) for particle size detection and identified surface marker by Western blot and flow cytometry. Then the cell proliferation was detected by CCK-8 and the effect of T-Exo on the expression levels of pro-inflammatory cytokines was tested by ELISA. ALF mouse models were induced by LPS and D-GalN. H&E staining, immunohistochemistry, and Western blot were used to detect the effect of T-Exo on the levels of NLRP3 and other inflammation-related pathway proteins. qPCR was used to detect the expression level of microRNA-299-3p in T-Exo and its transfer to macrophages. Laser confocal microscopy was used to detect colocalization of exosomes,Golgi and NLRP3 in macrophages. KEY FINDINGS: Our study shows that T-Exo can reduce serum ALT, AST and proinflammatory cytokines level and inhibit activation of NLRP3 inflammation-associated pathway proteins. T-Exo treatment reduces pathological liver damage caused by ALF. Anti-inflammatory-related miRNA-299-3p is up-regulated in TNF-α-stimulated MSCs and selectively packaged into exosomes for role in exosomal treatment. And conducted preliminary exploration and hypothesis on the specific mechanism of this effect. SIGNIFICANCE: These in vitro and in vivo studies indicate that T-Exo attenuates inflammatory damage caused by ALF and promotes liver tissue repair by inhibiting the activation of the NLRP3 pathway.


Subject(s)
Exosomes/drug effects , Liver Failure, Acute/therapy , Macrophages/metabolism , Mesenchymal Stem Cells/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Tumor Necrosis Factor-alpha/pharmacology , Animals , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Exosomes/physiology , Exosomes/transplantation , Humans , Liver Function Tests , Macrophages/drug effects , Mesenchymal Stem Cells/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Polymerase Chain Reaction , RAW 264.7 Cells , Umbilical Cord/cytology
7.
Biochem Biophys Res Commun ; 508(3): 735-741, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30528233

ABSTRACT

Human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) play an important role in the regulation of the immune system and inflammatory responses; however, their role in acute liver failure (ALF) and related pathological conditions is unclear. In this study, we found that hUCMSC-EXOs can reduce the expression of the NLRP3 inflammasome and downstream inflammatory factors in acute liver failure. Western blot and ELISA results showed that hUCMSC-EXOs decreased the expression of NLRP3, caspase-1, IL-1ß and IL-6 in LPS-stimulated RAW 264.7 macrophages. In vivo, the hUCMSC-EXOs repaired damaged liver tissue and decreased the expression of the NLRP3 inflammasome and the levels of ALT and AST in a mouse ALF model. The results of this study provide a new strategy for the application of human umbilical cord mesenchymal stem cell-derived exosomes in the treatment of ALF.


Subject(s)
Exosomes/transplantation , Inflammasomes/metabolism , Liver Failure, Acute/metabolism , Liver Failure, Acute/therapy , Macrophages/metabolism , Mesenchymal Stem Cells/cytology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Umbilical Cord/cytology , Animals , Disease Models, Animal , Humans , Infant, Newborn , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...