Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.351
Filter
1.
Acta Pharmacol Sin ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987388

ABSTRACT

Liver X receptors (LXRs) which link lipid metabolism and inflammation, were overexpressed in experimental rheumatoid arthritis (RA) rats as observed in our previous studies, while suppression of LXRα by silybin ameliorates arthritis and abnormal lipid metabolism. However, the role of LXRs in RA remains undefined. In this study, we investigated the inhibition role of LXRs in the polarization and activation of M1 macrophage by using a special LXRs inverse agonist SR9243, which led to ameliorating the progression of adjuvant-induced arthritis (AIA) in rats. Mechanistically, SR9243 disrupted the LPS/IFN-γ-induced Warburg effect in M1 macrophages, while glycolysis inhibitor 2-DG attenuated the inhibition effect of SR9243 on M1 polarization and the cytokines expression of M1 macrophages including iNOS, TNF-α, and IL-6 in vitro. Furthermore, SR9243 downregulated key glycolytic enzymes, including LDH-A, HK2, G6PD, GLUT1, and HIF-1α in M1 macrophages, which is mediated by increased phosphorylation of AMPK (Thr172) and reduced downstream phosphorylation of mTOR (Ser2448). Importantly, gene silencing of LXRs compromises the inhibition effect of SR9243 on M1 macrophage polarization and activation. Collectively, for the first time, our findings suggest that the LXR inverse agonist SR9243 mitigates adjuvant-induced rheumatoid arthritis and protects against bone erosion by inhibiting M1 macrophage polarization and activation through modulation of glycolytic metabolism via the AMPK/mTOR/HIF-1α pathway.

2.
Biomed Environ Sci ; 37(6): 617-627, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38988112

ABSTRACT

Objective: The aim of this study was to explore the role and mechanism of ferroptosis in SiO 2-induced cardiac injury using a mouse model. Methods: Male C57BL/6 mice were intratracheally instilled with SiO 2 to create a silicosis model. Ferrostatin-1 (Fer-1) and deferoxamine (DFO) were used to suppress ferroptosis. Serum biomarkers, oxidative stress markers, histopathology, iron content, and the expression of ferroptosis-related proteins were assessed. Results: SiO 2 altered serum cardiac injury biomarkers, oxidative stress, iron accumulation, and ferroptosis markers in myocardial tissue. Fer-1 and DFO reduced lipid peroxidation and iron overload, and alleviated SiO 2-induced mitochondrial damage and myocardial injury. SiO 2 inhibited Nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant genes, while Fer-1 more potently reactivated Nrf2 compared to DFO. Conclusion: Iron overload-induced ferroptosis contributes to SiO 2-induced cardiac injury. Targeting ferroptosis by reducing iron accumulation or inhibiting lipid peroxidation protects against SiO 2 cardiotoxicity, potentially via modulation of the Nrf2 pathway.


Subject(s)
Disease Models, Animal , Ferroptosis , Iron Overload , Mice, Inbred C57BL , Myocytes, Cardiac , Silicon Dioxide , Silicosis , Animals , Ferroptosis/drug effects , Male , Mice , Iron Overload/metabolism , Silicon Dioxide/toxicity , Silicosis/metabolism , Silicosis/drug therapy , Silicosis/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Deferoxamine/pharmacology , Phenylenediamines/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Oxidative Stress/drug effects , Iron/metabolism , Cyclohexylamines/pharmacology
3.
FASEB J ; 38(14): e23798, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38989582

ABSTRACT

The role of mesenchymal-stem-cell-derived exosomes (MSCs-Exo) in the regulation of macrophage polarization has been recognized in several diseases. There is emerging evidence that MSCs-Exo partially prevent the progression of diabetic nephropathy (DN). This study aimed to investigate whether exosomes secreted by MSCs pre-treated with a diabetic environment (Exo-pre) have a more pronounced protective effect against DN by regulating the balance of macrophages. Exo-pre and Exo-Con were isolated from the culture medium of UC-MSCs pre-treated with a diabetic mimic environment and natural UC-MSCs, respectively. Exo-pre and Exo-Con were injected into the tail veins of db/db mice three times a week for 6 weeks. Serum creatinine and serum urea nitrogen levels, the urinary protein/creatinine ratio, and histological staining were used to determine renal function and morphology. Macrophage phenotypes were analyzed by immunofluorescence, western blotting, and quantitative reverse transcription polymerase chain reaction. In vitro, lipopolysaccharide-induced M1 macrophages were incubated separately with Exo-Con and Exo-pre. We performed microRNA (miRNA) sequencing to identify candidate miRNAs and predict their target genes. An miRNA inhibitor was used to confirm the role of miRNAs in macrophage modulation. Exo-pre were more potent than Exo-Con at alleviating DN. Exo-pre administration significantly reduced the number of M1 macrophages and increased the number of M2 macrophages in the kidney compared to Exo-Con administration. Parallel outcomes were observed in the co-culture experiments. Moreover, miR-486-5p was distinctly expressed in Exo-Con and Exo-pre groups, and it played an important role in macrophage polarization by targeting PIK3R1 through the PI3K/Akt pathway. Reducing miR-486-5p levels in Exo-pre abolished macrophage polarization modulation. Exo-pre administration exhibited a superior effect on DN by remodeling the macrophage balance by shuttling miR-486-5p, which targets PIK3R1.


Subject(s)
Diabetic Nephropathies , Exosomes , Macrophages , Mesenchymal Stem Cells , MicroRNAs , Umbilical Cord , Exosomes/metabolism , Animals , Mesenchymal Stem Cells/metabolism , Diabetic Nephropathies/metabolism , Mice , Macrophages/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Umbilical Cord/cytology , Umbilical Cord/metabolism , Male , Mice, Inbred C57BL , Macrophage Activation
4.
Prog Neurobiol ; : 102656, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009108

ABSTRACT

The orientation map is one of the most well-studied functional maps of the visual cortex. However, results from the literature are of different qualities. Clear boundaries among different orientation domains and blurred uncertain distinctions were shown in different studies. These unclear imaging results will lead to an inaccuracy in depicting cortical structures, and the lack of consideration in experimental design will also lead to biased depictions of the cortical features. How we accurately define orientation domains will impact the entire field of research. In this study, we test how spatial frequency (SF), stimulus size, location, chromatic, and data processing methods affect the orientation functional maps (including a large area of dorsal V4, and parts of dorsal V1) acquired by intrinsic signal optical imaging. Our results indicate that, for large imaging fields, large grating stimuli with mixed SF components should be considered to acquire the orientation map. A diffusion model image enhancement based on the difference map could further improve the map quality. In addition, the similar outcomes of achromatic and chromatic gratings indicate two alternative types of afferents from LGN, pooling in V1 to generate cue-invariant orientation selectivity.

5.
Eur J Immunol ; : e2350655, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973083

ABSTRACT

Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.

6.
bioRxiv ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39005454

ABSTRACT

Understanding how circuits in the brain simultaneously coordinate their activity to mediate complex ethnologically relevant behaviors requires recording neural activities from distributed populations of neurons in freely behaving animals. Current miniaturized imaging microscopes are typically limited to imaging a relatively small field of view, precluding the measurement of neural activities across multiple brain regions. Here we present a miniaturized micro-camera array microscope (mini-MCAM) that consists of four fluorescence imaging micro-cameras, each capable of capturing neural activity across a 4.5 mm x 2.55 mm field of view (FOV). Cumulatively, the mini-MCAM images over 30 mm2 area of sparsely expressed GCaMP6s neurons distributed throughout the dorsal cortex, in regions including the primary and secondary motor, somatosensory, visual, retrosplenial, and association cortices across both hemispheres. We demonstrate cortex-wide cellular resolution in vivo Calcium (Ca 2+ ) imaging using the mini-MCAM in both head-fixed and freely behaving mice.

7.
Opt Express ; 32(10): 18366-18378, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858994

ABSTRACT

Mode-pairing quantum key distribution (MP-QKD) holds great promise for the practical implementation of QKD in the near future. It combines the security advantages of measurement device independence while still being capable of breaking the Pirandola-Laurenza-Ottaviani-Banchi bound without the need for highly demanding phase-locking and phase-tracking technologies for deployment. In this work, we explore optimization strategies for MP-QKD in a wavelength-division multiplexing scenario. The simulation results reveal that incorporation of multiple wavelengths not only leads to a direct increase in key rate but also enhances the pairing efficiency by employing our novel pairing strategies among different wavelengths. As a result, our work provides a new avenue for the future application and development of MP-QKD.

8.
Curr Med Imaging ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38874029

ABSTRACT

BACKGROUND: Patients with diffuse large B-cell lymphoma (DLBCL) often experience a poor prognosis due to cardiac damage induced by anthracycline chemotherapy, with left ventricular diastolic dysfunction manifesting early. Vector Flow Mapping (VFM) is a novel technology, and its effectiveness in detecting left ventricular diastolic dysfunction following anthracycline chemotherapy remains unverified. OBJECTS: This study evaluates left ventricular diastolic function in DLBCL patients after anthracycline chemotherapy using vector flow mapping (VFM). MATERIALS AND METHODS: We prospectively enrolled 54 DLBCL patients who had undergone anthracycline chemotherapy (receiving a minimum of 4 cycles) as the case group and 54 age- and sex-matched individuals as controls. VFM assessments were conducted in the case group pre-chemotherapy (T0), post-4 chemotherapy cycles (T4), and in the control group. Measurements included basal, middle, and apical segment energy loss (ELb, ELm, ELa) and intraventricular pressure differences (IVPDb, IVPDm, IVPDa) across four diastolic phases: isovolumic relaxation (D1), rapid filling (D2), slow filling (D3), and atrial contraction (D4). RESULTS: When comparing parameters between the control and case groups at T0, no significant differences were observed in general data, conventional ultrasound parameters, and VFM parameters (all P > 0.05). From T0 to T4, ELa significantly increased throughout the diastole cycle (all P < 0.05); ELm increased only during D4 (all P < 0.05); and ELb increased during D1, D2, and D4 (all P < 0.05). All IVPD measurements (IVPDa, IVPDm, IVPDb) increased during D1 and D4 (all P < 0.05) but decreased during D2 and D3 (all P < 0.05). Significant positive correlations were identified between ELa-D4, IVPDa-D4, and parameters A, e', E/e,' and LAVI (all r > 0.5, all P < 0.001). Negative correlations were noted with E/A for ELa- D4 IVPDa-D4 (all r < -0.5, all P < 0.001). Positive correlations were observed for IVPDa-D1, IVPDa-D2 with E, E/e', and LAVI (0.3

9.
Natl Sci Rev ; 11(7): nwae174, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38887544

ABSTRACT

Chemically modified superatoms have emerged as promising candidates in the new periodic table, in which Au13 and its doped M n Au13- n have been widely studied. However, their important counterpart, Ag13 artificial element, has not yet been synthesized. In this work, we report the synthesis of Ag13 nanoclusters using strong chelating ability and rigid ligands, that fills the gaps in the icosahedral superatomic metal clusters. After further doping Ag13 template with different degrees of Au atoms, we gained insight into the evolution of their optical properties. Theoretical calculations show that the kernel metal doping can modulate the transition of the excited-state electronic structure, and the electron transfer process changes from local excitation (LE) to charge transfer (CT) to LE. This study not only enriches the families of artificial superatoms, but also contributes to the understanding of the electronic states of superatomic clusters.

10.
iScience ; 27(6): 109979, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38832007

ABSTRACT

This review explores the hallmarks of cancer resistance, including drug efflux mediated by ATP-binding cassette (ABC) transporters, metabolic reprogramming characterized by the Warburg effect, and the dynamic interplay between cancer cells and mitochondria. The role of cancer stem cells (CSCs) in treatment resistance and the regulatory influence of non-coding RNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are studied. The chapter emphasizes future directions, encompassing advancements in immunotherapy, strategies to counter adaptive resistance, integration of artificial intelligence for predictive modeling, and the identification of biomarkers for personalized treatment. The comprehensive exploration of these hallmarks provides a foundation for innovative therapeutic approaches, aiming to navigate the complex landscape of cancer resistance and enhance patient outcomes.

11.
Anal Methods ; 16(24): 3831-3838, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38828794

ABSTRACT

We designed and prepared probe W-1 for the detection of H2O2. W-1 showed excellent selectivity for H2O2 and was accompanied by colorimetric signal changes. The excellent linear relationship between fluorescence intensity and H2O2 concentration (0-100 µM) provided favorable conditions for its quantitative detection. In addition, the combination of portable test strips with a smartphone platform provided great convenience for on-site visual detection of H2O2. Moreover, W-1 possessed targeting mitochondria property and could be applied to image the exogenous and endogenous H2O2 in cells to distinguish normal cells and cancer cells. Lastly, W-1 was used for monitoring the H2O2 fluctuation of the diabetic process in mice, and the results showed an increase in H2O2 levels in diabetes. Therefore, the probe provided a tool for understanding the pathological and physiological mechanisms of diabetes by imaging H2O2.


Subject(s)
Diabetes Mellitus, Experimental , Fluorescent Dyes , Hydrogen Peroxide , Mitochondria , Hydrogen Peroxide/metabolism , Animals , Mitochondria/metabolism , Fluorescent Dyes/chemistry , Mice , Humans , Colorimetry/methods , Optical Imaging/methods
12.
Echocardiography ; 41(6): e15868, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924593

ABSTRACT

OBJECTIVE: The noninvasive right ventricular pressure-strain loop (PSL) represents a novel method for the quantitative assessment of right ventricular myocardial function. Given that atrial septal defect (ASD) is a prevalent congenital heart anomaly associated with right ventricular volume overload, this study aimed to quantitatively assess the myocardial function of the right ventricle in ASD patients pre- and post-occlusion by noninvasive right ventricular PSL. METHODS: This study included 36 patients diagnosed with secundum ASD group and 30 healthy adults (control group). We compared conventional right ventricular echocardiographic parameters, right ventricular strain, and myocardial work in the ASD group before occlusion, two days post-occlusion, and three months post-occlusion, with those in the control group. RESULTS: Prior to and two days following occlusion, the ASD group exhibited higher right ventricular global work index (RVGWI), right ventricular global wasted work (RVGWW), and right ventricular global constructive work (RVGCW) compared to the control group (P < .05). Within the ASD group, post-occlusion, RVGWI, RVGCW, and RVGWW values were significantly reduced compared to pre-occlusion values (P < .001). Furthermore, RVGWI and RVGCW showed a significant decrease three months after occlusion compared to two days post-occlusion (P < .05). Multivariate regression analysis identified ASD diameter and pulmonary artery systolic pressure (PASP) as independent predictors of RVGWI (ß = .405, P < .001; ß = 2.307, P = .037) and RVGCW(ß = .350, P<.001; ß = 1.967, P = .023). CONCLUSIONS: The noninvasive right ventricular PSL effectively demonstrates the alterations in right ventricular myocardial function in ASD patients, pre- and post-occlusion. The metrics of right ventricular myocardial work (RVMW) offer a novel indicator for evaluating right ventricular myocardial function in these patients. Moreover, ASD diameter and PASP emerge as independent determinants of RVGWI and RVGCW.


Subject(s)
Echocardiography , Heart Septal Defects, Atrial , Heart Ventricles , Humans , Female , Male , Heart Septal Defects, Atrial/physiopathology , Heart Septal Defects, Atrial/complications , Adult , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Echocardiography/methods , Ventricular Function, Right/physiology , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/etiology , Ventricular Pressure/physiology , Reproducibility of Results
13.
Acta Psychol (Amst) ; 248: 104350, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925073

ABSTRACT

The prevalence of learning anxiety among Chinese migrant middle school students is a notable concern in academia. There is a wealth of research on the effects of internal and external locus of control on learning anxiety, but there is still a lack of research on unknown locus of control. To grasp the situation of migrant middle school students in terms of learning anxiety, to understand the relationship between migrant middle school students' unknown locus of control and learning anxiety, this study surveyed 351 migrant middle school students, using Mental Health Test, Multidimensional Measure of Children's Perceptions of Control, Middle School Students Learning Motivation Scale to do the questionnaire survey. The data analysis conducted through SPSS software revealed the following findings: (1) There is a positive prediction of learning anxiety from an unknown locus of control (ß = 0.139, p < 0.05). (2) Unknown locus of control indirectly influences learning anxiety through both learning goal distress and excessive learning motivation. Learning goal distress and excessive learning motivation partially mediate the relationship between unknown locus of control and learning anxiety. The total magnitude of the indirect effects is 0.15 (p<0.05). The effect is significant, but the size of the effect is small and the issue of generalizability should be considered. The research findings suggest that the unknown locus of control indirectly affects learning anxiety through difficulties with learning goals and excessive learning motivation. It is suggested that increasing opportunities for students to make independent choices and to develop their sense of self-control in daily lessons; guiding students to set appropriate learning goals, avoiding too high or too low, emphasizing refinement of goals and the combination of long-term and short-term goals.

15.
Aging Dis ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38913050

ABSTRACT

This comprehensive review navigates the complex relationship between cellular aging, senescence, and cancer, unraveling the determinants of cellular fate. Beginning with an overview of cellular aging's significance in cancer, the review explores processes, changes, and molecular pathways influencing senescence. The review explores senescence as a dual mechanism in cancer, acting as a suppressor and contributor, focusing on its impact on therapy response. This review highlights opportunities for cancer therapies that target cellular senescence. The review further examines the senescence-associated secretory phenotype and strategies to modulate cellular aging to influence tumor behavior. Additionally, the review highlights the mechanisms of senescence escape in aging and cancer cells, emphasizing their impact on cancer prognosis and resistance to therapy. The article addresses current advances, unexplored aspects, and future perspectives in understanding cellular aging and senescence in cancer.

16.
Clin Transl Oncol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935240

ABSTRACT

BACKGROUND: Since the imported PD-1 inhibitor pembrolizumab was listed in China in 2018, China has opened up the era of immunotherapy for malignant tumors, with several domestically produced PD-1 inhibitors coming onto the market one after another. To find out whether there are differences in the efficacy and safety of domestic and imported PD-1 inhibitors in patients with advanced non-small cell lung cancer, we conducted this retrospective study in two tertiary hospitals in China. METHODS: Patients with advanced NSCLC treated with tislelizumab or camrelizumab or pembrolizumab who met the inclusion criteria were screened through the electronic medical record system. A total of 259 patients were screened, but due to the unbalanced baseline, we performed propensity score matching and finally included 149 patients in three groups: pembrolizumab (n = 38), tislelizumab (n = 38), and camrelizumab (n = 73), which had very balanced baseline characteristics in each group after propensity score matching treatment. RESULTS: The results showed that the median progression-free period was 11.3 m vs 10.1 m vs 8.9 m; p = 0.754; and the objective response rate was 63.2% vs 50% vs 57.5%; P = 0.510 for pembrolizumab, tislelizumab, and carrelizumab, respectively. There was no significant difference in median PFS between PD-L1 expression subgroups. In terms of safety, only skin toxicity of any grade of carrelizumab was higher than that of the other two groups (p = 0.034), and the incidence of grade ≥ 3 adverse reactions was not statistically significant among the three groups. CONCLUSION: In this real-world study, the efficacy and safety of the domestically produced tislelizumab, camrelizumab, and the imported pembrolizumab were comparable.

17.
Aging (Albany NY) ; 16(11): 10132-10141, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862253

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is a prevalent acute abdominal condition, and AP induced colonic barrier dysfunction is commonly observed. Total flavonoids of Chrysanthemum indicum L (TFC) have exhibited noteworthy anti-inflammatory and anti-apoptotic properties. METHODS: We established AP models, both in animals and cell cultures, employing Cerulein. 16S rRNA gene sequencing was performed to investigate the gut microorganisms changes. RESULTS: In vivo, TFC demonstrated a remarkable capacity to ameliorate AP, as indicated by the inhibition of serum amylase, myeloperoxidase (MPO) levels, and the reduction in pancreatic tissue water content. Furthermore, TFC effectively curtailed the heightened inflammatory response. The dysfunction of colonic barrier induced by AP was suppressed by TFC. At the in vitro level, TFC treatment resulted in attenuation of increased cell apoptosis, and regulation of apoptosis related proteins expression in AR42J cells. The increase of Bacteroides sartorial, Lactobacillus reuteri, Muribaculum intestinale, and Parabacteroides merdae by AP, and decrease of of Helicobacter rodentium, Pasteurellaceae bacterium, Streptococcus hyointestinalis by AP were both reversed by TFC treatment. CONCLUSIONS: TFC can effectively suppress AP progression and AP induced colonic barrier dysfunction by mitigating elevated serum amylase, MPO levels, water content in pancreatic tissue, as well as curtailing inflammation, apoptosis. The findings presented herein shed light on the potential mechanisms by which TFC inhibit the development of AP progression and AP induced colonic barrier dysfunction.


Subject(s)
Chrysanthemum , Flavonoids , Gastrointestinal Microbiome , Pancreatitis , Animals , Gastrointestinal Microbiome/drug effects , Chrysanthemum/chemistry , Pancreatitis/metabolism , Pancreatitis/microbiology , Pancreatitis/drug therapy , Flavonoids/pharmacology , Male , Rats , Colon/drug effects , Colon/metabolism , Colon/pathology , Apoptosis/drug effects , Disease Models, Animal , Cell Line , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology
18.
Fundam Res ; 4(3): 678-689, 2024 May.
Article in English | MEDLINE | ID: mdl-38933195

ABSTRACT

Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype. Molecular stratification and target therapy bring clinical benefit for TNBC patients, but it is difficult to implement comprehensive molecular testing in clinical practice. Here, using our multi-omics TNBC cohort (N = 425), a deep learning-based framework was devised and validated for comprehensive predictions of molecular features, subtypes and prognosis from pathological whole slide images. The framework first incorporated a neural network to decompose the tissue on WSIs, followed by a second one which was trained based on certain tissue types for predicting different targets. Multi-omics molecular features were analyzed including somatic mutations, copy number alterations, germline mutations, biological pathway activities, metabolomics features and immunotherapy biomarkers. It was shown that the molecular features with therapeutic implications can be predicted including the somatic PIK3CA mutation, germline BRCA2 mutation and PD-L1 protein expression (area under the curve [AUC]: 0.78, 0.79 and 0.74 respectively). The molecular subtypes of TNBC can be identified (AUC: 0.84, 0.85, 0.93 and 0.73 for the basal-like immune-suppressed, immunomodulatory, luminal androgen receptor, and mesenchymal-like subtypes respectively) and their distinctive morphological patterns were revealed, which provided novel insights into the heterogeneity of TNBC. A neural network integrating image features and clinical covariates stratified patients into groups with different survival outcomes (log-rank P < 0.001). Our prediction framework and neural network models were externally validated on the TNBC cases from TCGA (N = 143) and appeared robust to the changes in patient population. For potential clinical translation, we built a novel online platform, where we modularized and deployed our framework along with the validated models. It can realize real-time one-stop prediction for new cases. In summary, using only pathological WSIs, our proposed framework can enable comprehensive stratifications of TNBC patients and provide valuable information for therapeutic decision-making. It had the potential to be clinically implemented and promote the personalized management of TNBC.

19.
Chem Commun (Camb) ; 60(57): 7374-7377, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38922126

ABSTRACT

Detailed photophysical processes of two AuCu14 clusters with different substituents (-F or -C(CH3)3) of the thiol ligand were studied in this work. The electronic effect of the substituents led to structural shrinkage, thus enhancing the luminous intensity. The internal conversion (IC) and intersystem crossing (ISC) rates in the AuCu14-C(CH3)3 crystal were slower compared with the AuCu14-F crystal, which was caused by the steric effect.

20.
Food Res Int ; 190: 114600, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945570

ABSTRACT

Browning commonly appeared in apple processing, which varied in different apple varieties. Present work investigated the metabolomics of four varieties apple of Yataka, Gala, Sansa, and Fuji, which possessed different browning characteristics and related enzymes. Sansa as browning insensitive apple variety, exhibited the least chroma change with the lowest PPO activity and the highest SOD activity among the four apple varieties. Browning inhibition pretreatment increased the activity of SOD and PAL and decreased PPO and POD activity. In addition, metabolomic variances among the four apple varieties (FC), their browning pulp (BR) and browning inhibition pulp (CM) were compared. And the key metabolites were in-depth analyzed to match the relevant KEGG pathways and speculated metabolic networks. There were 487, 644, and 494 significant differential metabolites detected in FC, BR and CM, which were consisted of lipids, benzenoids, phenylpropanoids, organheterocyclic compounds, organic acids, nucleosides, accounting for 23 %, 11 %, 15 %, 16 %, 11 % of the total metabolites. The differential metabolites were matched with 39, 49, and 36 KEGG pathways in FC, BR, and CM, respectively, in which other secondary metabolites biosynthesis metabolism was the most significant in FC, lipid metabolism was the most significant in BR and CM, and energy metabolism was markedly annotated in CM. Notably, Sansa displayed the highest number of differential metabolites in both its BR (484) and CM (342). The BR of Sansa was characterized by flavonoid biosynthesis, while the other three apple varieties were associated with α-linolenic acid metabolism. Furthermore, in browning sensitive apple varieties, the flavonoid and phenylpropanoid biosynthesis pathway was significantly activated by browning inhibition pretreatment. Phenolic compounds, lipids, sugars, organic acids, nucleotides, and adenosine were regulated differently in the four apple varieties, potentially serving as key regulatory sites. Overall, this work provides novel insight for browning prevention in different apple varieties.


Subject(s)
Fruit , Malus , Metabolomics , Malus/metabolism , Malus/classification , Fruit/metabolism , Fruit/chemistry , Food Handling/methods , Maillard Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...