Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
World J Clin Cases ; 10(7): 2315-2321, 2022 Mar 06.
Article in English | MEDLINE | ID: mdl-35321182

ABSTRACT

BACKGROUND: Granulocytic sarcoma (GS) is a rare malignant tumor, and relapse is even rarer in the breast and dorsal spine following allogeneic hematopoietic stem cell transplantation. Currently, a standard treatment regimen is not available. CASE SUMMARY: A rare case of GS of the right breast and dorsal spine after complete remission of acute myelogenous leukemia is reported here. A 55-year-old female patient presented with a palpable, growing, painless lump as well as worsening dorsal compressive myelopathy. She had a history of acute myelomonocytic leukemia (AML M4) and achieved complete remission after chemotherapy following allogeneic hematopoietic stem cell transplantation. Imaging examinations showed the breast lump and C7-T1 epidural masses suspected of malignancy. Histologic results were compatible with GS in both the right breast and dorsal spine, which were considered extramedullary relapse of the AML treated 4 years earlier. CONCLUSION: A rare case of GS relapse following allogeneic hematopoietic stem cell transplantation and guidelines for treatment are discussed.

2.
J Agric Food Chem ; 61(23): 5474-82, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23692274

ABSTRACT

This work reports a polydopamine-graft-poly(acrylic acid) (Pdop-g-PAA)-coated controlled-release multi-element compound fertilizer with water-retention function by a combination of mussel-inspired chemistry and surface-initiated atom transfer radical polymerization (SI-ATRP) techniques for the first time. The morphology and composition of the products were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), gel permeation chromatography (GPC), and inductively coupled plasma (ICP) emission spectrometry. The results revealed that the stimuli-responsive layer formed by a Pdop inner layer and a PAA outer corona exhibit outstanding selective permeability to charged nutrients and the release rate of encapsulated elements can be tailored by the pH values. At low pH, the Pdop-g-PAA layer can reduce nutrient loss, and at high pH, the coating restrains transportation of negative nutrients but favors the release of cations. Moreover, PAA brushes provide good water-retention property. This Pdop-graft-polymer brushes coating will be effective and promising in the research and development of multi-functional controlled-release fertilizer.


Subject(s)
Acrylates/chemistry , Fertilizers/analysis , Polymers/chemical synthesis , Animals , Bivalvia/chemistry , Hydrogen-Ion Concentration , Indoles/chemistry , Polymerization , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties
3.
J Agric Food Chem ; 61(12): 2919-24, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23464683

ABSTRACT

This work reports on a facile and reliable method to prepare a polydopamine film coated controlled-release multielement compound fertilizer (PCMCF) based on mussel-inspired chemistry for the first time. The polydopamine (Pdop) film was coated on double copper potassium pyrophosphate trihydrate, providing three essential nutrients (Cu, K, and P) by spontaneous oxidative polymerization of dopamine. The thickness of the polymer coating of the fertilizer was controlled by using the multistep deposition technique. The morphology and composition of the products were characterized by transmission electron microscopy, inductively coupled plasma emission spectrometer, a vis spectrophotometer, and a Kjeltec autoanalyzer. The controlled-release behavior of four elements, including nitrogen from Pdop, was evaluated in water and in soil (sterilized or not). The results revealed that the coated fertilizers had good slow-release properties, incubated in either water or soil. It is noted that the release rate of nutrients of PCMCF can be tailored by the thickness of the Pdop coating, and the Pdop coating can be biodegraded in soil. This coating technology will be effective and promising in the research and development of controlled-release fertilizer.


Subject(s)
Bivalvia/chemistry , Fertilizers/analysis , Indoles , Polymers , Animals , Copper , Delayed-Action Preparations , Microscopy, Electron, Transmission , Oxidation-Reduction , Phosphorus , Polymers/chemistry , Potassium , Soil/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL