Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1216651, 2023.
Article in English | MEDLINE | ID: mdl-38090709

ABSTRACT

Despite the large demand for dental restoration each year, the design of crown restorations is mainly performed via manual software operation, which is tedious and subjective. Moreover, the current design process lacks biomechanics optimization, leading to localized stress concentration and reduced working life. To tackle these challenges, we develop a fully automated algorithm for crown restoration based on deformable model fitting and biomechanical optimization. From a library of dental oral scans, a conditional shape model (CSM) is constructed to represent the inter-teeth shape correlation. By matching the CSM to the patient's oral scan, the optimal crown shape is estimated to coincide with the surrounding teeth. Next, the crown is seamlessly integrated into the finish line of preparation via a surface warping step. Finally, porous internal supporting structures of the crown are generated to avoid excessive localized stresses. This algorithm is validated on clinical oral scan data and achieved less than 2 mm mean surface distance as compared to the manual designs of experienced human operators. The mechanical simulation was conducted to prove that the internal supporting structures lead to uniform stress distribution all over the model.

2.
Article in English | MEDLINE | ID: mdl-37022859

ABSTRACT

Designing thin-shell structures that are diverse, lightweight, and physically viable is a challenging task for traditional heuristic methods. To address this challenge, we present a novel parametric design framework for engraving regular, irregular, and customized patterns on thin-shell structures. Our method optimizes pattern parameters such as size and orientation, to ensure structural stiffness while minimizing material consumption. Our method is unique in that it works directly with shapes and patterns represented by functions, and can engrave patterns through simple function operations. By eliminating the need for remeshing in traditional FEM methods, our method is more computationally efficient in optimizing mechanical properties and can significantly increase the diversity of shell structure design. Quantitative evaluation confirms the convergence of the proposed method. We conduct experiments on regular, irregular, and customized patterns and present 3D printed results to demonstrate the effectiveness of our approach.

3.
IEEE Trans Vis Comput Graph ; 28(7): 2615-2627, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33180728

ABSTRACT

In this approach, we present an efficient topology and geometry optimization of triply periodic minimal surfaces (TPMS) based porous shell structures, which can be represented, analyzed, optimized and stored directly using functions. The proposed framework is directly executed on functions instead of remeshing (tetrahedral/hexahedral), and this framework substantially improves the controllability and efficiency. Specifically, a valid TPMS-based porous shell structure is first constructed by function expressions. The porous shell permits continuous and smooth changes of geometry (shell thickness) and topology (porous period). The porous structures also inherit several of the advantageous properties of TPMS, such as smoothness, full connectivity (no closed hollows), and high controllability. Then, the problem of filling an object's interior region with porous shell can be formulated into a constraint optimization problem with two control parameter functions. Finally, an efficient topology and geometry optimization scheme is presented to obtain optimized scale-varying porous shell structures. In contrast to traditional heuristic methods for TPMS, our work directly optimize both the topology and geometry of TPMS-based structures. Various experiments have shown that our proposed porous structures have obvious advantages in terms of efficiency and effectiveness.

SELECTION OF CITATIONS
SEARCH DETAIL
...