Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Int Immunopharmacol ; 138: 112525, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941668

ABSTRACT

BACKGROUND: Airway epithelial barrier dysfunction has been proved to contribute to the development of type 2 inflammation of asthma. Interleukin (IL)-37 is a negative regulator of immune responses and allergic airway inflammation. However, whether IL-37 has any effect on airway epithelial barrier has been unknown. METHODS: We evaluated the role of IL-37 in both mouse model and cultured 16HBE cells. Histology and ELISA assays were used to evaluate airway inflammation. FITC-dextran permeability assay was used to evaluate the airway epithelial barrier function. Immunofluorescence, western blot and quantitative Real-Time PCR (RT-PCR) were used to evaluate the distribution and expression of tight junction proteins. RT-PCR and Ca2+ fluorescence measurement were used to evaluate the mRNA expression and activity of store-operated calcium entry (SOCE). RESULTS: IL-37 inhibited house dust mite (HDM)-induced airway inflammation and decreased the levels of IgE in serum and type 2 cytokines in bronchoalveolar lavage fluid (BALF) compared to asthmatic mice. IL-37 protected against HDM-induced airway epithelial barrier dysfunction, including reduced leakage of FITC-dextran, enhanced expression of TJ proteins, and restored the membrane distribution of TJ proteins. Moreover, IL-37 decreased the level of IL-33 in the BALF of asthmatic mice and the supernatants of HDM-treated 16HBE cells. IL-37 decreased the peak level of Ca2+ fluorescence induced by thapsigargin and HDM, and inhibited the mRNA expression of Orai1, suggesting an inhibiting effect of IL-37 on SOCE in airway epithelial cells. CONCLUSION: IL-37 plays a protective role in airway inflammation and HDM-induced airway epithelial barrier dysfunction by inhibiting SOCE.

2.
JCI Insight ; 9(8)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38478516

ABSTRACT

Both anaplastic thyroid cancer (ATC) and papillary thyroid cancer (PTC) originate from thyroid follicular epithelial cells, but ATC has a significantly worse prognosis and shows resistance to conventional therapies. However, clinical trials found that immunotherapy works better in ATC than late-stage PTC. Here, we used single-cell RNA sequencing (scRNA-Seq) to generate a single-cell atlas of thyroid cancer. Differences in ATC and PTC tumor microenvironment components (including malignant cells, stromal cells, and immune cells) leading to the polarized prognoses were identified. Intriguingly, we found that CXCL13+ T lymphocytes were enriched in ATC samples and might promote the development of early tertiary lymphoid structure (TLS). Last, murine experiments and scRNA-Seq analysis of a treated patient's tumor demonstrated that famitinib plus anti-PD-1 antibody could advance TLS in thyroid cancer. We displayed the cellular landscape of ATC and PTC, finding that CXCL13+ T cells and early TLS might make ATC more sensitive to immunotherapy.


Subject(s)
Chemokine CXCL13 , Immunotherapy , Thyroid Cancer, Papillary , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Carcinoma, Anaplastic/immunology , Animals , Mice , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/immunology , Thyroid Neoplasms/therapy , Thyroid Neoplasms/genetics , Immunotherapy/methods , Chemokine CXCL13/metabolism , Chemokine CXCL13/genetics , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Single-Cell Analysis , Prognosis , T-Lymphocytes/immunology , Female , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Male
3.
EMBO Mol Med ; 16(3): 575-595, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366162

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening disease caused by a novel bunyavirus (SFTSV), mainly transmitted by ticks. With no effective therapies or vaccines available, understanding the disease's mechanisms is crucial. Recent studies found increased expression of programmed cell death-1 (PD-1) on dysfunctional T cells in SFTS patients. However, the role of the PD-1/programmed cell death-ligand 1 (PD-L1) pathway in SFTS progression remains unclear. We investigated PD-1 blockade as a potential therapeutic strategy against SFTSV replication. Our study analyzed clinical samples and performed in vitro experiments, revealing elevated PD-1/PD-L1 expression in various immune cells following SFTSV infection. An anti-PD-1 nanobody, NbP45, effectively inhibited SFTSV infection in peripheral blood mononuclear cells (PBMCs), potentially achieved through the mitigation of apoptosis and the augmentation of T lymphocyte proliferation. Intriguingly, subcutaneous administration of NbP45 showed superior efficacy compared to a licensed anti-PD-1 antibody in an SFTSV-infected humanized mouse model. These findings highlight the involvement of the PD-1/PD-L1 pathway during acute SFTSV infection and suggest its potential as a host target for immunotherapy interventions against SFTSV infection.


Subject(s)
Bunyaviridae Infections , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Humans , Mice , Bunyaviridae Infections/drug therapy , Phlebovirus/physiology , B7-H1 Antigen , Leukocytes, Mononuclear , Programmed Cell Death 1 Receptor
4.
Ann Surg Oncol ; 30(12): 7172-7180, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37543550

ABSTRACT

BACKGROUND: Surgery is the primary treatment for locally advanced differentiated thyroid cancer (DTC). However, some locally advanced patients are not candidates for R0/1 resection. There is limited evidence of neoadjuvant treatment in locally advanced DTC. Surufatinib targets multiple kinases, which is efficient, tolerable, and safe in patients with radioiodine-refractory DTC. In addition, surufatinib plus toripalimab (an anti-PD-1 antibody) showed encouraging antitumor activity in advanced solid tumors. This study was designed to evaluate the efficacy and safety of surufatinib plus toripalimab in locally advanced DTC in the neoadjuvant setting. METHODS: In this single-arm, phase II study, patients with pathologically confirmed unresectable or borderline resectable DTC were eligible and received a combination of 250 mg of surufatinib (orally daily) with 240 mg of toripalimab (intravenous, every 3 weeks). Treatment continued until satisfied for curative surgery, disease progression, withdrawal of consent, unacceptable toxicity, or investigator decision. Primary endpoint was objective response rate (ORR). Secondary endpoints included R0/1 resection rate, adverse events (AEs), etc. RESULTS: Ten patients were enrolled and received at least 4 cycles of treatment. The ORR was 60%. Nine patients received R0/1 resections after neoadjuvant treatment. The median best percentage change in the sum of the target lesion diameter was 32%. Most adverse events (AEs) were grade 1 or 2. CONCLUSIONS: Surufatinib in combination with toripalimab as neoadjuvant therapy for locally advanced DTC was feasible, and the majority of patients achieved R0/1 resection. It represents a new option for locally advanced DTC and needs further investigation.

5.
Sci Adv ; 9(35): eadg7125, 2023 09.
Article in English | MEDLINE | ID: mdl-37647391

ABSTRACT

TERT reactivation occurs frequently in human malignancies, especially advanced cancers. However, in vivo functions of TERT reactivation in cancer progression and the underlying mechanism are not fully understood. In this study, we expressed TERT and/or active BRAF (BRAF V600E) specifically in mouse thyroid epithelium. While BRAF V600E alone induced papillary thyroid cancer (PTC), coexpression of BRAF V600E and TERT resulted in poorly differentiated thyroid carcinoma (PDTC). Spatial transcriptome analysis revealed that tumors from mice coexpressing BRAF V600E and TERT were highly heterogeneous, and cell dedifferentiation was positively correlated with ribosomal biogenesis. Mechanistically, TERT boosted ribosomal RNA (rRNA) expression and protein synthesis by interacting with multiple proteins involved in ribosomal biogenesis. Furthermore, we found that CX-5461, an rRNA transcription inhibitor, effectively blocked proliferation and induced redifferentiation of thyroid cancer. Thus, TERT promotes thyroid cancer progression by inducing cancer cell dedifferentiation, and ribosome inhibition represents a potential strategy to treat TERT-reactivated cancers.


Subject(s)
Adenocarcinoma , Telomerase , Thyroid Neoplasms , Humans , Animals , Mice , Proto-Oncogene Proteins B-raf/genetics , Thyroid Neoplasms/genetics , Cell Dedifferentiation/genetics , RNA, Ribosomal , Ribosomes/genetics , Telomerase/genetics
6.
Front Immunol ; 14: 1167562, 2023.
Article in English | MEDLINE | ID: mdl-37228621

ABSTRACT

Background: The prevalence of food allergy (FA) is increasing. Decreases in the diversity of gut microbiota may contribute to the pathogenesis of FA by regulating IgE production of B cells. Intermittent fasting (IF) is a popular diet with the potential to regulate glucose metabolism, boosting immune memory and optimizing gut microbiota. The potential effect of long-term IF on the prevention and treatment of FA is still unknown. Methods: Two IF protocols (16 h fasting/8 h feeding and 24 h fasting/24 h feeding) were conducted on mice for 56 days, while the control mice were free to intake food (free diet group, FrD). To construct the FA model, all mice were sensitized and intragastrical challenged with ovalbumin (OVA) during the second half of IF (day 28 to day 56). Rectal temperature reduction and diarrhea were recorded to evaluate the symptoms of FA. Levels of serum IgE, IgG1, Th1/Th2 cytokines, mRNA expression of spleen T cell related transcriptional factors, and cytokines were examined. H&E, immunofluorescence, and toluidine blue staining were used to assess the structural changes of ileum villi. The composition and abundance of gut microbiota were analyzed by 16srRNA sequencing in cecum feces. Results: The diarrhea score and rectal temperature reduction were lower in the two fasting groups compared to the FrD groups. Fasting was associated with lower levels of serum OVA-sIgE, OVA-sIgG1, interleukin (IL)-4 and IL-5, and mRNA expression of IL-4, IL-5, and IL-10 in the spleen. While no significant association was observed in interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-6, IL-2 levels. Less mast cell infiltration in ileum was observed in the 16h/8h fasting group compared to the FrD group. ZO-1 expression in the ileum of the two fasting groups was higher in IF mice. The 24h/24h fasting reshaped the gut microbiota, with a higher abundance of Alistipes and Rikenellaceae strains compared to the other groups. Conclusion: In an OVA-induced mice FA model, long-term IF may attenuate FA by reducing Th2 inflammation, maintaining the integrity of the intestinal epithelial barrier, and preventing gut dysbiosis.


Subject(s)
Food Hypersensitivity , Gastrointestinal Microbiome , Mice , Animals , Intermittent Fasting , Disease Models, Animal , Interleukin-5 , Food Hypersensitivity/etiology , Cytokines/metabolism , Immunoglobulin E , Diarrhea , RNA, Messenger
7.
Allergy ; 78(2): 369-388, 2023 02.
Article in English | MEDLINE | ID: mdl-36420736

ABSTRACT

There has been an important change in the clinical characteristics and immune profile of Coronavirus disease 2019 (COVID-19) patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy of the COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4, and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) may cause severe and heterogeneous disease but with a lower mortality rate. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. There is conflicting evidence about whether atopic diseases, such as allergic asthma and rhinitis, are associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, the European Academy of Allergy and Clinical Immunology (EAACI) developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID-19.


Subject(s)
Anaphylaxis , COVID-19 Vaccines , COVID-19 , Child , Humans , COVID-19 Vaccines/adverse effects , Post-Acute COVID-19 Syndrome , SARS-CoV-2
8.
J Oral Pathol Med ; 52(5): 389-401, 2023 May.
Article in English | MEDLINE | ID: mdl-36153671

ABSTRACT

BACKGROUND: Lymph node metastasis can independently predict oral squamous cell carcinoma patients' survival. This study would investigate the genetic and cellular differences between oral squamous cell carcinoma with positive and negative lymph node metastases. METHODS: We gathered single-cell RNA sequencing and bulk gene expression data from the Cancer Genome Atlas and Gene Expression Omnibus databases. Sixty lymph node-metastasis-related genes were discovered with refined single-cell RNA sequencing data analysis, and consensus clustering provided three molecular subtypes of oral squamous cell carcinoma. Least absolute shrinkage and selection operator analyses were then utilized to establish a five-gene risk model. CIBERSORT analysis revealed the immune infiltration profile of different risk subgroups. RESULTS: Oral squamous cell carcinoma patients were classified into three subtypes based on the 60 lymph node-metastasis-related key genes identified by single-cell RNA sequencing data. Patients in Subtype 3 showed a tendency for lymph node metastasis and poorer prognosis. Moreover, five biomarkers were selected from the 60 genes to construct a five-gene risk model evaluating the risk of lymph node metastasis. A lower probability of lymph node metastasis and a better prognosis was observed in the low-risk group. The immune infiltration of three different risk groups was explored with CIBERSORT. Besides, further analysis implied different sensitivities of anticancer drugs, including immunotherapy drugs and targeted compounds, in the three risk groups. CONCLUSION: In view of intratumoral heterogeneity, we found 60 genes associated with lymph node metastasis of oral squamous cell carcinoma. Subsequently, we constructed a five-gene signature that could improve the prediction of lymph node metastasis, clinical outcome, and promote individualized treatment strategies for oral squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Lymphatic Metastasis/genetics , Prognosis , RNA-Seq
9.
Cell Discov ; 8(1): 120, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36344509

ABSTRACT

Medullary thyroid carcinoma (MTC) is a rare neuroendocrine malignancy derived from parafollicular cells (C cells) of the thyroid. Here we presented a comprehensive multi-omics landscape of 102 MTCs through whole-exome sequencing, RNA sequencing, DNA methylation array, proteomic and phosphoproteomic profiling. Integrated analyses identified BRAF and NF1 as novel driver genes in addition to the well-characterized RET and RAS proto-oncogenes. Proteome-based stratification of MTCs revealed three molecularly heterogeneous subtypes named as: (1) Metabolic, (2) Basal and (3) Mesenchymal, which are distinct in genetic drivers, epigenetic modification profiles, clinicopathologic factors and clinical outcomes. Furthermore, we explored putative therapeutic targets of each proteomic subtype, and found that two tenascin family members TNC/TNXB might serve as potential prognostic biomarkers for MTC. Collectively, our study expands the knowledge of MTC biology and therapeutic vulnerabilities, which may serve as an important resource for future investigation on this malignancy.

10.
Head Neck ; 44(3): 805-809, 2022 03.
Article in English | MEDLINE | ID: mdl-34862825

ABSTRACT

The objective of this study is to demonstrate a novel method for the reconstruction of right recurrent laryngeal nerve (RLN) by transforming into nonrecurrent RLN: the end-to-free vagal laryngeal branch end anastomosis. Here we report a case of locally advanced thyroid carcinoma. The patient underwent radical thyroid surgery with inevitably partial RLN resection and immediate right RLN reconstruction at our institution. With the guidance of intraoperative neuromonitoring (IOMN), we completed a novel end-to-free vagal laryngeal branch end anastomosis. The whole procedure was deliberately monitored by IOMN. Surgeons can procure adequate free nerve for tension-free anastomosis by transforming the right RLN into nonrecurrent nerve. Follow-up laryngoscope showed improved adductory movement of the right arytenoid. The end-to-free vagal end anastomosis is an effective way to reconstruct segmental nerve resection of right RLN. Its long-term postoperative result needs to be further warranted.


Subject(s)
Recurrent Laryngeal Nerve Injuries , Recurrent Laryngeal Nerve , Anastomosis, Surgical , Humans , Laryngeal Nerves/surgery , Recurrent Laryngeal Nerve/physiology , Recurrent Laryngeal Nerve/surgery , Recurrent Laryngeal Nerve Injuries/prevention & control , Recurrent Laryngeal Nerve Injuries/surgery , Thyroidectomy/methods , Vagus Nerve/physiology , Vagus Nerve/surgery
11.
Front Cell Dev Biol ; 9: 723777, 2021.
Article in English | MEDLINE | ID: mdl-34796170

ABSTRACT

PRDM16 (known as MEL1), a member of the PR domain zinc finger family, has been implicated in multiple biological processes, including cancers. It is not clear yet whether PRDM16 is involved in tumor progress of papillary thyroid cancer (PTC). We identified the PRDM16 expression level in PTC tissues by qRT-PCR and analyzed its relationship with clinical characteristics in both Fudan University Shanghai Cancer Center (FUSCC) and TCGA cohorts. We tested the function of PRDM16 in PTC cells both in vivo and in vitro. We found a direct downstream target of PRDM16, pyruvate carboxylase (PC), by RNA-sequencing, rescue experiments, luciferase assay, and chromatin immunoprecipitation assay. PRDM16 was downregulated in papillary thyroid cancer tissues and was significantly related with lymph node metastases and extrathyroidal extension in both FUSCC and TCGA cohorts. Overexpression of PRDM16 could attenuate proliferation and migration of PTC cells via inhibiting the epithelial-to-mesenchymal transition process. PC was upregulated in papillary thyroid cancer tissues. Knockdown of PC could inhibit proliferation and migration in TPC-1 and K1 cells. The repression effect on cell proliferation and migration from PRDM16 was PC dependent. PRDM16 could directly bind to the PC promoter and inhibit its expression at the transcription level. Moreover, the mRNA expression level of PRDM16 and PC was negatively related in human PTC tissues. In conclusion, PRDM16 exhibited an antitumor effect and EMT inhibition function in PTC by directly binding with the PC promoter. PRDM16 may be a novel therapeutic target in papillary thyroid cancer.

12.
Nat Commun ; 12(1): 6058, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663816

ABSTRACT

The tumor ecosystem of papillary thyroid carcinoma (PTC) is poorly characterized. Using single-cell RNA sequencing, we profile transcriptomes of 158,577 cells from 11 patients' paratumors, localized/advanced tumors, initially-treated/recurrent lymph nodes and radioactive iodine (RAI)-refractory distant metastases, covering comprehensive clinical courses of PTC. Our data identifies a "cancer-primed" premalignant thyrocyte population with normal morphology but altered transcriptomes. Along the developmental trajectory, we also discover three phenotypes of malignant thyrocytes (follicular-like, partial-epithelial-mesenchymal-transition-like, dedifferentiation-like), whose composition shapes bulk molecular subtypes, tumor characteristics and RAI responses. Furthermore, we uncover a distinct BRAF-like-B subtype with predominant dedifferentiation-like thyrocytes, enriched cancer-associated fibroblasts, worse prognosis and promising prospect of immunotherapy. Moreover, potential vascular-immune crosstalk in PTC provides theoretical basis for combined anti-angiogenic and immunotherapy. Together, our findings provide insight into the PTC ecosystem that suggests potential prognostic and therapeutic implications.


Subject(s)
Ecosystem , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Transcriptome , Adolescent , Carcinoma/genetics , Gene Expression Regulation, Neoplastic , Humans , Iodine Radioisotopes , Lymph Nodes/metabolism , Male , Single-Cell Analysis , Thyroid Cancer, Papillary/pathology , Thyroid Epithelial Cells/metabolism , Thyroid Neoplasms/pathology
13.
J Exp Clin Cancer Res ; 40(1): 222, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34225773

ABSTRACT

BACKGROUND: tRNA-derived small noncoding RNAs (sncRNAs) are mainly categorized into tRNA halves (tiRNAs) and fragments (tRFs). Biological functions of tiRNAs in human solid tumor are attracting more and more attention, but researches concerning the mechanisms in tiRNAs-mediated tumorigenesis are rarely. The direct regulatory relationship between tiRNAs and splicing-related proteins remain elusive. METHODS: Papillary thyroid carcinoma (PTC) associated tRNA fragments were screened by tRNA fragments deep sequencing and validated by qRT-PCR and Northern Blot in PTC tissues. The biological function of tRNA fragments were assessed by cell counting kit, transwells and subcutaneous transplantation tumor of nude mice. For mechanistic study, tRNA fragments pull-down, RNA immunoprecipitation, Western Blot, Immunofluorescence, Immunohistochemical staining were performed. RESULTS: Herein, we have identified a 33 nt tiRNA-Gly significantly increases in papillary thyroid cancer (PTC) based on tRFs & tiRNAs sequencing. The ectopic expression of tiRNA-Gly promotes cell proliferation and migration, whereas down-regulation of tiRNA-Gly exhibits reverse effects. Mechanistic investigations reveal tiRNA-Gly directly bind the UHM domain of a splicing-related RNA-binding protein RBM17. The interaction with tiRNA-Gly could translocate RBM17 from cytoplasm into nucleus. In addition, tiRNA-Gly increases RBM17 protein expression via inhibiting its degradation in a ubiquitin/proteasome-dependent way. Moreover, RBM17 level in tiRNA-Gly high-expressing human PTC tissues is upregulated. In vivo mouse model shows that suppression of tiRNA-Gly decreases RBM17 expression. Importantly, tiRNA-Gly can induce exon 16 splicing of MAP4K4 mRNA leading to phosphorylation of downstream signaling pathway, which is RBM17 dependent. CONCLUSIONS: Our study firstly illustrates tiRNA-Gly can directly bind to RBM17 and display oncogenic effect via RBM17-mediated alternative splicing. This fully novel model broadens our understanding of molecular mechanism in which tRNA fragment in tumor cells directly bind RNA binding protein and play a role in alternative splicing.


Subject(s)
RNA Splicing Factors/metabolism , RNA, Transfer, Gly/metabolism , RNA, Transfer/metabolism , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/metabolism , Alternative Splicing , Animals , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Female , Heterografts , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , RNA Splicing Factors/genetics , RNA, Transfer/genetics , RNA, Transfer, Gly/genetics , Signal Transduction , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology
14.
J Mater Chem B ; 9(12): 2845-2853, 2021 03 28.
Article in English | MEDLINE | ID: mdl-33704321

ABSTRACT

Photothermal therapy (PTT) is a promising strategy for cancer treatment. However, the development of highly efficient photothermal agents with excellent biosafety, particularly with low liver retention, is very meaningful for clinical applications, but it is also challenging. We herein prepared a pH-sensitive nanoagent (NanoPc3) by the self-assembly of a zinc(ii) phthalocyanine substituted with hexadeca-sulphonates linked by hydrazone bonds for photoacoustic imaging and PTT. Due to the highly negative surface potential (-30.80 mV in water), NanoPc3 could effectively escape the phagocytosis of the reticuloendothelial system and be rapidly cleared from normal tissues, leading to little accumulation in the liver and excellent biosafety. The highly negatively-charged NanoPc3 changed into nearly neutral nanoparticles (NanoPc3H) under slightly acidic conditions, resulting in enhanced cellular uptake and retention time in tumor tissues. Moreover, the tumor of H22 tumor-bearing mice treated with NanoPc3 almost disappeared, suggesting an outstanding photothermal antitumor effect. NanoPc3 also hardly showed skin phototoxicity under irradiation. Its excellent antitumor effect and biosafety make NanoPc3 highly promising in clinical applications. This work will provide a new strategy for the design of tumor-targeted photothermal nanoagents with high biosafety.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Nanoparticles/chemistry , Photothermal Therapy , Zinc/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Indoles/chemistry , Isoindoles , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Mice , Molecular Structure , Zinc/chemistry
15.
J Cancer ; 11(14): 4250-4260, 2020.
Article in English | MEDLINE | ID: mdl-32368308

ABSTRACT

The impact of Hashimoto's thyroiditis (HT) on the progression of papillary thyroid cancer (PTC) is still unclear. Interleukin-2 (IL-2) is a growth factor and crucial for HT development. This study aimed at investigating the effect of IL-2 on MHC class I expression in PTC cells and immune activation with experimental treatment for PTC using PTC cell lines. We assessed the expression of IL-2, HLA class I, PD-L1, CD3, CD8 and CD16 molecules in paired PTC tissues and HLA-ABC and PD-L1 expression in IL-2 pre-treated K1, TPC-1 and BCPAP cells by immunohistochemistry, qPCR, flow cytometry and Western blotting. The effect of IL-2 on immunogenicity of PTC cells to stimulate activated human T cells was determined for the percentages of activated CD8+ T cells and their cytokine production as well as PD-1 and PD-L1 expression. Compared with non-tumor tissues, we found that IL-2 expression was up-regulated in PTC tissues, particularly in PTC+HT tissues and correlated positively with HLA-class I, CD3 and CD8 expression in PTC+HT tissues. Conversely, PD-L1 expression decreased in PTC+HT tissues. Treatment with IL-2 significantly up-regulated HLA-class I expression, but down-regulated PD-L1 expression in PTC cells. Co-culture with IL-2-pre-treated PTC cells significantly promoted the proliferation of activated CD8+ T cells and their IL-2 secretion, but decreased their PD-1 expression, accompanied by decreased PD-L1 expression in IL-2-treated PTC cells in vitro. In conclusion, IL-2 up-regulated HLA-class I expression and enhanced anti-tumor T cell immunity during the development of PTC and HT. IL-2 may be a promising immunotherapy for PTC.

16.
Bioorg Med Chem Lett ; 30(12): 127164, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32291134

ABSTRACT

To develop a highly efficient photosensitizer for photodynamic therapy (PDT), we have designed and synthesized a phthalocyanine-lactose conjugate (Pc-Lac) through axial modification of silicon(IV) phthalocyanine with lactose moieties. With the lactose substituents, Pc-Lac is highly hydrophilic and non-aggregated with efficient reactive oxygen species (ROS) generation in aqueous media. With these desirable properties, Pc-Lac shows high photocytotoxicity and cellular uptake toward HepG2 cells. In addition, in vivo fluorescence imaging shows that Pc-Lac could selectively remain at tumor site, leading to its enhanced photodynamic efficacy against H22 tumor-bearing mice. Therefore, Pc-Lac shows a great potential as a highly efficient molecular photosensitizer for PDT.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Indoles/pharmacology , Lactose/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Silicon/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Indoles/chemistry , Isoindoles , Lactose/chemistry , Liver Neoplasms, Experimental/diagnostic imaging , Liver Neoplasms, Experimental/drug therapy , Mice , Molecular Structure , Optical Imaging , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Silicon/chemistry , Structure-Activity Relationship
17.
Med Sci Monit ; 26: e922518, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32341329

ABSTRACT

BACKGROUND Thyroid cancer, which is the most common endocrine cancer, has shown a drastic increase in incidence globally over the past decade. The present study investigated the thyroid cancer-inhibitory potential of jatrorrhizine-platinum(II) complex (JR-P(II) in vitro and in vivo. MATERIAL AND METHODS The JR-P(II)-mediated cytotoxicity in thyroid carcinoma cells was determined by using MTT assay. Assessment of acetylated histones, tubulin, and DNA repair proteins was made by Western blot assays. Flow cytometry was used for apoptosis and ROS accumulation measurement. RESULTS The JR-P(II) suppressed proliferative capacity of SW1736, BHP7-13, and 8305C cells. JR-P(II) treatment markedly promoted expression of acetylated histone H3, H4, and tubulin in a dose-dependent manner. Treatment with JR-P(II) significantly elevated the proportion of cells in sub-G1 and promoted cleaved caspase-3 and -9. In JR-P(II)-treated cells, DCFH-DA fluorescence was much higher relative to control cells. The JR-P(II) treatment consistently suppressed expression of pS6, p-ERK1/2, p-4E-BP1, and p-AKT, and increased p-H2AX expression and suppressed KU70 and KU80 protein levels. The level of RAD51 was repressed in JR-P(II)-treated cells. JR-P(II) administration in mice caused no significant change in body weight, and it inhibited SW1736 tumor growth in mice. CONCLUSIONS The JR-P(II) induced cytotoxicity in thyroid cancer cells by inhibiting the mechanism responsible for repair of double-stranded DNA. The in vivo data also revealed that JR-P(II) effectively inhibits thyroid tumor growth by inducing DNA damage. Thus, our results suggest that further evaluation of JR-P(II) as a therapeutic candidate for thyroid cancer is warranted.


Subject(s)
Apoptosis/drug effects , Berberine/analogs & derivatives , Thyroid Neoplasms/metabolism , Animals , Autophagy/drug effects , Berberine/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , China , Female , Humans , Mice , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Platinum/metabolism , Platinum/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Thyroid Gland/pathology , Thyroid Neoplasms/drug therapy , Xenograft Model Antitumor Assays
18.
Endocrinology ; 161(10)2020 10 01.
Article in English | MEDLINE | ID: mdl-32348468

ABSTRACT

The incidence of papillary thyroid cancer (PTC) with concomitant Hashimoto thyroiditis (HT) is increasing. Interleukin (IL)-10 is a cytokine previously reported to be elevated in this condition. Evidence from multiple human malignancies showed IL-10 participated in tumor immunity and exhibited therapeutic potential. The aim of this study is to investigate whether IL-10 interferes with tumor immunity in PTC with concomitant HT. Expression of IL-10 and major histocompatibility complex (MHC) class Ⅰ were compared with PTC tissues with or without concomitant HT. PTC cell lines K1 and TPC-1 were stimulated with IL-10 and analyzed for MHC class Ⅰ expression afterward. T-cell activation, production of IL-2 and interferon (IFN)-γ and programmed death-1 (PD-1) expression were assessed by coculture of donor peripheral blood lymphocytes (PBLs) with IL-10-pretreated PTC cells. Programmed death-ligand 1 (PD-L1) expression was measured in PTC tissues and IL-10-pretreated cells of K1 and TPC-1. Increased levels of IL-10 and MHC class Ⅰ were observed in PTC with concomitant HT. IL-10 stimulation increased MHC class Ⅰ expression of PTC cells in vitro. Coculture of PBLs with IL-10-pretreated PTC cells enhanced T-cell activation (% cluster of differentiation [CD]25+ of CD3+T cells) and increased IL-2 production along with decreased IFN-γ secretion and PD-1 expression. Reduced PD-L1 expression was seen in PTC + HT tissue samples and IL-10-stimulated PTC cell lines. Elevated IL-10 expression in PTC with concomitant HT restores MHC class Ⅰ expression and interferes with tumor immunity. The potential mechanism of IL-10 in tumor immunity needs further investigation.


Subject(s)
Genes, MHC Class I/drug effects , Hashimoto Disease/genetics , Interleukin-10/pharmacology , Lymphocyte Activation/drug effects , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/genetics , Adult , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cells, Cultured , Cohort Studies , Female , Gene Expression Regulation, Neoplastic/drug effects , Hashimoto Disease/complications , Hashimoto Disease/immunology , Hashimoto Disease/pathology , Humans , Interleukin-10/genetics , Interleukin-10/metabolism , Lymphocyte Activation/genetics , Male , Middle Aged , T-Lymphocytes/drug effects , T-Lymphocytes/physiology , Thyroid Cancer, Papillary/complications , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/complications , Thyroid Neoplasms/immunology , Thyroid Neoplasms/pathology , Tumor Escape/drug effects , Tumor Escape/genetics , Young Adult
19.
Thyroid ; 30(7): 1025-1036, 2020 07.
Article in English | MEDLINE | ID: mdl-32031055

ABSTRACT

Background: Sporadic medullary thyroid carcinoma (MTC) is a relatively uncommon neuroendocrine malignancy and the molecular tumorigenesis of its sporadic type (sMTC) is only partially understood. In this study, we performed a study focusing on the genomic and transcriptomic characterization of sMTC. Methods: Twenty-nine sMTC patients were included. Whole-exome sequencing (WES) was carried out in 18 patients, including both tumor samples and matched noncancerous tissues. Whole transcriptome sequencing (RNA-Seq) was performed in all 29 tumors. WES, RNA-Seq, and copy number alteration (CNA) data were analyzed. A Cell Counting Kit-8 (CCK-8) assay was used to evaluate cell proliferation. Results: Among the somatic mutations, RET was the only recurrently cancer-related mutated gene (5/18, 27.8%). In the germline, FAT1 and FAT4, two members of the FAT gene family, were identified as the two most common mutated genes. CNA analysis found that FAT1 and FAT4, both located on chromosome 4q, were also two of the genes most commonly affected by somatic chromosomal deletions (4/18, 22.2%). Using TT and MZ-CRC-1 cell lines, the CCK-8 assay showed that FAT1 and FAT4 knockdown could promote MTC cell proliferation. Based on the gene expression profile, patients were clustered into two molecular subtypes: the mesenchymal-like subtype is characterized by epithelial-mesenchymal transition, while the proliferative-like subtype is associated with enrichment of cell cycle pathways. Most events of structural recurrence (80%) occurred in the proliferative-like subtype. Conclusion: In addition to RET, these findings demonstrate that FAT1/FAT4 genomic alterations appear to be frequent in sMTC. Two molecular subtypes of sMTC with distinct biological behavior could be identified. However, these results need to be validated by larger samples and more comprehensive experiments in the future, especially for the frequency and function of FAT1/FAT4 germline variants.


Subject(s)
Carcinoma, Medullary/genetics , Mutation , Proto-Oncogene Proteins c-ret/genetics , Thyroid Gland/metabolism , Thyroid Neoplasms/genetics , Transcriptome , Adolescent , Adult , Aged , Carcinoma, Medullary/metabolism , Carcinoma, Medullary/pathology , Female , Humans , Male , Middle Aged , Proto-Oncogene Proteins c-ret/metabolism , Thyroid Gland/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Exome Sequencing
20.
ACS Appl Bio Mater ; 3(11): 7876-7885, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-35019528

ABSTRACT

Thermodynamic therapy (TDT), one that uses heat to activate thermosensitizers and produce reactive oxygen species (ROS), has recently emerged as an attractive approach for cancer therapy. However, the development of safe and efficient thermosensitizers for TDT remains a big challenge. Here, we have found that artesunate (ARS) could produce ROS upon heating. Based on this interesting result, we have designed and prepared a pH-sensitive liposomal nanoplatform (ICG-ARS@NPs) composed of indocyanine green (ICG) and ARS for photoinduced TDT as well as photothermal therapy (PTT). Under the slightly acidic conditions in tumor tissues, the pH-sensitive liposomal ICG-ARS@NPs were able to release their drug cargos. Upon near-infrared irradiation, the photothermal agent ICG generated in situ hyperthermia and triggered the thermal sensitizing activity of ARS to produce ROS, resulting in damage to cancer cells and tumor tissues. The heat-induced ROS generation of ARS was also confirmed both in vitro and in vivo. In addition, because of their specific tumor targeting and synergistic photothermal and thermodynamic effects, ICG-ARS@NPs exhibited highly efficient anticancer therapeutic efficacy in H22 tumor-bearing mice. We believe that this work will promote the exploration of TDT for cancer therapy as well as the application of the old drug, artemisinin.

SELECTION OF CITATIONS
SEARCH DETAIL
...