Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1336787, 2024.
Article in English | MEDLINE | ID: mdl-38699389

ABSTRACT

Objectives: To investigate the association between contrast-enhanced ultrasound (CEUS) features of PTC and central lymph node metastasis (CLNM) and to develop a predictive model for the preoperative identification of CLNM. Methods: This retrospective study evaluated 750 consecutive patients with PTC from August 2020 to April 2023. Conventional ultrasound and qualitative CEUS features were analyzed for the PTC with or without CLNM using univariate and multivariate logistic regression analysis. A nomogram integrating the predictors was constructed to identify CLNM in PTC. The predictive nomogram was validated using a validation cohort. Results: A total of 684 patients were enrolled. The 495 patients in training cohort were divided into two groups according to whether they had CLNM (pCLNM, n= 191) or not (nCLNM, n= 304). There were significant differences in terms of tumor size, shape, echogenic foci, enhancement direction, peak intensity, and score based on CEUS TI-RADS between the two groups. Independent predictive US features included irregular shape, larger tumor size (≥ 1.0cm), and score. Nomogram integrating these predictive features showed good discrimination and calibration in both training and validation cohort with an AUC of 0.72 (95% CI: 0.68, 0.77) and 0.79 (95% CI: 0.72, 0.85), respectively. In the subgroup with larger tumor size, age ≤ 35 years, irregular shape, and score > 6 were independent risk factors for CLNM. Conclusion: The score based on preoperative CEUS features of PTC may help to identify CLNM. The nomogram developed in this study provides a convenient and effective tool for clinicians to determine an optimal treatment regimen for patients with PTC.


Subject(s)
Contrast Media , Lymphatic Metastasis , Nomograms , Thyroid Cancer, Papillary , Thyroid Neoplasms , Ultrasonography , Humans , Female , Male , Ultrasonography/methods , Retrospective Studies , Middle Aged , Lymphatic Metastasis/diagnostic imaging , Adult , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/pathology , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Aged
2.
Chem Commun (Camb) ; 60(37): 4938-4941, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38629231

ABSTRACT

In this work, phosphate-rich cellulose beads (CBPs) were first used for cesium extraction from aqueous solutions. These green, abundant, cheap, and renewable CBPs demonstrated a high adsorption capacity and fast absorption rate. Besides, the CBPs also exhibited excellent stability and recycling performance, as well as good selectivity. This study presents the promising application potential of cellulose for efficient cesium extraction from aqueous media.

3.
Chem Commun (Camb) ; 60(4): 396-399, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38079190

ABSTRACT

Using a novel, irregular honeycombed N-doped porous carbon (NPC) as a support and defect inducer, defect-rich Zn-PBA was formed in situ and evenly anchored on the surface of NPC to obtain a defect-rich Zn-PBA/NPC composite. This composite demonstrated an ultrafast Cs+ adsorption rate that reached equilibrium within 60 s as well as excellent adsorption capacity, stability and reusability. The adsorption mechanism indicated that Cs+ was quickly adsorbed via the defect sites close to the Zn-PBA crystal face accompanied by K(OH2)+ elimination.

4.
Rheumatol Int ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37632525

ABSTRACT

Rice bodies (RBs) synovitis in the shoulder joints of systemic lupus erythematosus patients is a rare clinical condition that has not been previously reported. Despite the fact that the diagnosis of RBs synovitis has primarily relied on MRI imaging, ultrasound has been used less frequently. In this report, we discuss a 43-year-old female diagnosed with systemic lupus erythematosus who presented with pain and swelling in the right shoulder. The ultrasound findings were typical, and the patient was diagnosed with RBs synovitis, as she had no history of tuberculosis or rheumatoid arthritis. Subsequently, the patient underwent ultrasound-guided percutaneous biopsy and surgical excision, which led to a good postoperative outcome. Based on this case, a literature review of RBs synovitis over the past 2 decades indicates that rice bodies synovitis is rare in clinical presentation accompanied by SLE. Moreover, ultrasound has not been extensively employed for diagnosing this condition. It is important to note the pivotal role of ultrasound in detecting RBs synovitis, and it should be the preferred method for early detection. Therefore, ultrasound physicians should be well informed about this condition to enhance diagnostic precision.

5.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361883

ABSTRACT

Nephrotoxicity is the dose-limiting factor of cisplatin treatment. Magnesium isoglycyrrhizinate (MgIG) has been reported to ameliorate renal ischemia-reperfusion injury. This study aimed to investigate the protective effect and possible mechanisms of MgIG against cisplatin-induced nephrotoxicity from the perspective of cellular pharmacokinetics. We found that cisplatin predominantly accumulated in mitochondria of renal tubular epithelial cells, and the amount of binding with mitochondrial DNA (mtDNA) was more than twice that with nuclear DNA (nDNA). MgIG significantly lowered the accumulation of cisplatin in mitochondria and, in particular, the degree of target-binding to mtDNA. MgIG notably ameliorated cisplatin-induced changes in mitochondrial membrane potential, morphology, function, and cell viability, while the magnesium donor drugs failed to work. In a mouse model, MgIG significantly alleviated cisplatin-caused renal dysfunction, pathological changes of renal tubules, mitochondrial ultrastructure variations, and disturbed energy metabolism. Both in vitro and in vivo data showed that MgIG recovered the reduction of NAD+-related substances and NAD+-dependent deacetylase sirtuin-3 (SIRT3) level caused by cisplatin. Furthermore, SIRT3 knockdown weakened the protective effect of MgIG on mitochondria, while SIRT3 agonist protected HK-2 cells from cisplatin and specifically reduced platinum-binding activity with mtDNA. In conclusion, MgIG reduces the target-binding amount of platinum to mtDNA and exerts a protective effect on cisplatin-induced renal injury through SIRT3, which may provide a new strategy for the treatment of cisplatin-induced nephrotoxicity.


Subject(s)
Cisplatin , Sirtuin 3 , Mice , Animals , Cisplatin/adverse effects , Cisplatin/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , DNA, Mitochondrial/metabolism , Platinum/metabolism , NAD/metabolism , Mitochondria/metabolism , Kidney Tubules/metabolism
6.
Chem Pharm Bull (Tokyo) ; 70(10): 669-678, 2022.
Article in English | MEDLINE | ID: mdl-36184449

ABSTRACT

This study aimed to evaluate the interspecies difference in metabolism of mulberrin and examine the interaction between mulberrin and CYP enzymes or recombinant human uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) enzymes. Liver microsomes from human (HLMs), Beagle dog (DLMs), minipig (PLMs), monkey (MLMs), rabbit (RLMs), rat (RAMs), and mouse (MIMs) were used to investigate metabolic diversity among different species. Additionally, recombinant human supersomes were used to confirm that metabolic enzymes are involved in the biotransformation of mulberrin. We also evaluated the influence of mulberrin on protein expression by Western blot analysis. Mulberrin metabolism showed significant interspecies differences. We found four and two metabolites in phase I and II reaction systems, respectively. In phase I metabolism profiles of mulberrin for HLMs, PLMs and MLMs conformed to the classic Michaelis-Menten kinetics, RAMs and MIMs followed biphasic kinetics; phase II reaction of mulberrin in HLMs, DLMs, PLMs, MLMs, RLMs, RAMs and MIMs followed biphasic kinetics. UGT1A1 were the major CYP isoforms responsible for the metabolism of mulberrin. Mulberrin showed potent inhibitory effects against CYP3A4, CYP2C9, CYP2E1, UGT1A1, UGT1A3 and UGT2B7 with IC50 values of 54.21, 9.93, 39.12, 3.84, 2.01, 16.36 µM, respectively. According to Western blot analysis, mulberrin can upregulate the protein expression of CYP2C19, and downregulate the expression levels of CYP3A5 and CYP2C9 in HepG2 cells as concentration increased. The interspecies comparisons can help find other species with metabolic pathways similar to those in humans for future in vivo studies.


Subject(s)
Cytochrome P-450 CYP3A , Uridine Diphosphate , Animals , Benzene Derivatives , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP2C9/pharmacology , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1/pharmacology , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/pharmacology , Diphosphates/metabolism , Diphosphates/pharmacology , Dogs , Glucuronosyltransferase/metabolism , Glucuronosyltransferase/pharmacology , Humans , Mice , Microsomes, Liver/metabolism , Protein Isoforms/metabolism , Protein Isoforms/pharmacology , Rabbits , Rats , Species Specificity , Swine , Swine, Miniature/metabolism , Uridine/metabolism , Uridine/pharmacology , Uridine Diphosphate/metabolism , Uridine Diphosphate/pharmacology
7.
Front Behav Neurosci ; 16: 958301, 2022.
Article in English | MEDLINE | ID: mdl-35990724

ABSTRACT

Stress is associated with psychiatric disorders such as post-traumatic stress disorder, major depressive disorder, anxiety disorders, and panic disorders. Women are more likely to be diagnosed with these stress-related psychiatric disorders than men. A key phenotype in stress-related psychiatric disorders is impairment in cognitive flexibility, which is the ability to develop new strategies to respond to different patterns in the environment. Because gonadal hormones can contribute to sex differences in response to stress, it is important to consider where females are in their cycle when exposed to stress and cognitive flexibility testing. Moreover, identifying neural correlates involved in cognitive flexibility could not only build our understanding of the biological mechanisms behind this crucial skill but also leads to more targeted treatments for psychiatric disorders. Although previous studies have separately examined sex differences in cognitive flexibility, stress effects on cognitive flexibility, and the effect of gonadal hormones on cognitive flexibility, many of the findings were inconsistent, and the role of the estrous cycle in stress-induced impacts on cognitive flexibility is still unknown. This study explored potential sex differences in cognitive flexibility using an operant strategy shifting-paradigm after either control conditions or restraint stress in freely cycling female and male rats (with estrous cycle tracking in the female rats). In addition, we examined potential neural correlates for any sex differences observed. In short, we found that stress impaired certain aspects of cognitive flexibility and that there were sex differences in cognitive flexibility that were driven by the estrous cycle. Specifically, stress increased latency to first press and trials to criterion in particular tasks. The female rats demonstrated more omissions and perseverative errors than the male rats; the sex differences were mostly driven by proestrus female rats. Interestingly, the number of orexinergic neurons was higher in proestrus female rats than in the male rats under control conditions. Moreover, orexin neural count was positively correlated with number of perseverative errors made in cognitive flexibility testing. In sum, there are sex differences in cognitive flexibility that are driven by the estrous cycle and are stress-dependent, and orexin neurons may underlie some of the sex differences observed.

8.
Pharm Biol ; 60(1): 1591-1605, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35944298

ABSTRACT

CONTEXT: Toddalolactone, the main component of Toddalia asiatica (L.) Lam. (Rutaceae), has anticancer, antihypertension, anti-inflammatory, and antifungal activities. OBJECTIVE: This study investigated the metabolic characteristics of toddalolactone. MATERIALS AND METHODS: Toddalolactone metabolic stabilities were investigated by incubating toddalolactone (20 µM) with liver microsomes from humans, rabbits, mice, rats, dogs, minipigs, and monkeys for 0, 30, 60, and 90 min. The CYP isoforms involved in toddalolactone metabolism were characterized based on chemical inhibition studies and screening assays. The effects of toddalolactone (0, 10, and 50 µM) on CYP1A1 and CYP3A5 protein expression were investigated by immunoblotting. After injecting toddalolactone (10 mg/kg), in vivo pharmacokinetic profiles using six Sprague-Dawley rats were investigated by taking 9-time points, including 0, 0.25, 0.5, 0.75, 1, 2, 4, 6 and 8 h. RESULTS: Monkeys showed the greatest metabolic capacity in CYP-mediated and UGT-mediated reaction systems with short half-lives (T1/2) of 245 and 66 min, respectively, while T1/2 of humans in two reaction systems were 673 and 83 min, respectively. CYP1A1 and CYP3A5 were the major CYP isoforms involved in toddalolactone biotransformation. Induction of CYP1A1 protein expression by 50 µM toddalolactone was approximately 50% greater than that of the control (0 µM). Peak plasma concentration (Cmax) for toddalolactone was 0.42 µg/mL, and Tmax occurred at 0.25 h post-dosing. The elimination t1/2 was 1.05 h, and the AUC0-t was 0.46 µg/mL/h. CONCLUSIONS: These findings demonstrated the significant species differences of toddalolactone metabolic profiles, which will promote appropriate species selection in further toddalolactone studies.


Subject(s)
Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Animals , Coumarins , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/pharmacology , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Dogs , Humans , Mice , Microsomes, Liver , Rabbits , Rats , Rats, Sprague-Dawley , Swine , Swine, Miniature/metabolism
9.
Food Chem ; 352: 129410, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33677210

ABSTRACT

The purpose of this exploration was to determine the density and volumetric properties of the aqueous solution of Na2H2P2O7 with the molality varied from 0.08706 to 0.88402 mol·kg-1 measured at temperature intervals of 5 K from 283.15 to 363.15 K at 101.325 kPa using Anton Paar Digital vibrating-tube densimeter. The thermal expansion coefficient (α), apparent molar volume (VΦ), expansibility (ϕE), and partial molar volume (VB) of Na2H2P2O7 (aq) against temperature and molality have been evaluated from density data. On the basis of Pitzer ion-interaction apparent molar volume theory, the Pitzer single-salt parameters (ßM,X0v, ßM,X1v, ßM,X2v and CM,Xv, MX = Na2H2P2O7), and their correlation coefficients ai of the temperature-dependence formula f (i, p, T) = a1 + a2ln(T/298.15) + a3(T - 298.15) + a4/(620 - T) + a5/(T - 227) for Na2H2P2O7 were obtained for the first time. It was revealed that predicted apparent molar volumes agreed well with the experimental values indicating the single salt parameters and the temperature-dependent formula are reliable.


Subject(s)
Diphosphates/chemistry , Temperature , Water/chemistry , Pressure , Solutions
10.
J Hazard Mater ; 410: 124608, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33243651

ABSTRACT

In this work, novel Prussian blue analogs-based layered double hydroxide (PBA@ZnTi-LDH) was in situ synthesized and used for radioactive Cs+ removal from wastewater. The results suggested that this PBA@ZnTi-LDH prepared using LDH as skeleton and transition metal source showed higher adsorption capacity (243.9 mg/g) and water stability than conventional PBAs, and promising application in scale-up Cs+ removal. Thus, it was granulated by calcium alginate and the PBA@ZnTi-LDH/CaALG exhibited favorable post-separation and fixed-bed adsorption ability at different Cs+ concentrations and flow rates, highlighting its application perspective on Cs+ removal from various kinds of wastewater. Moreover, the real-world Cs+ removal was preliminarily explored using natural complex Cs+-containing water. As a result, this stable and easily separated PBA@ZnTi-LDH/CaALG showed high removal efficiency, selectivity and good reusability, which was promising in scale-up Cs+ removal from the real-world wastewater.

11.
Environ Res ; 189: 109952, 2020 10.
Article in English | MEDLINE | ID: mdl-32980023

ABSTRACT

Developing effective adsorbents for 137Cs removal from complex wastewater systems has been a significant challenge. Although existing spheres adsorbents could improve the post-separation ability and practical operability, the adsorption kinetics are still significantly retarded due to the large intra-particle diffusion resistance. Here, we demonstrate the efficiency of a robust Prussian blue analogue/polyvinyl chloride composite membrane (PPM), which was easily prepared by a simple solvent evaporation method. In virtue of the less dense layer and ion-sieving functionality, it showed enhanced kinetics (5 h) and super selectivity (SF = 248.3-5388.6) towards Cs+. New PPM was robust within a wide pH range (2-10) and exhibited favorable removal capacity (152.8 mg/g), placing it at an outstanding material for Cs+ removal among other adsorbents. Moreover, PPM could be simply eluted and reused using a KCl solution as eluent. A study of the adsorption mechanism confirmed an ion-exchange action during the removal process. Thus, PPM is considered to be a promising candidate for the removal of Cs+ from multicomponent aqueous solutions.


Subject(s)
Polyvinyl Chloride , Water Pollutants, Chemical , Adsorption , Ferrocyanides , Hydrogen-Ion Concentration , Kinetics , Solutions , Water Pollutants, Chemical/analysis
12.
Sci Rep ; 10(1): 8221, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427956

ABSTRACT

In this work, a series of polyphenol porous polymers were derived from biomass polyphenols via a facile azo-coupling method. The structure and morphologies of the polymer were characterized by BET, TEM, SEM, XRD, TGA and FT-IR techniques. Batch experiments demonstrated their potentialities for adsorptive separation of Cs+ from aqueous solution. Among them, porous polymers prepared with gallic acid as starting material (GAPP) could adsorb Cs+ at wide pH value range effectively, and the optimal adsorption capacity was up to 163.6 mg/g, placing it at top material for Cs+ adsorption. GAPP exhibited significantly high adsorption performance toward Cs+ compared to Na+ and K+, making it possible in selective removal of Cs+ from ground water in presence of co-existing competitive ions. Moreover, the Cs-laden GAPP could be facilely eluted and reused in consecutive adsorption-desorption processes. As a result, we hope this work could provide ideas about the potential utilization of biomass polyphenol in environmental remediation.

13.
RSC Adv ; 10(11): 6139-6145, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-35496001

ABSTRACT

A novel, facilely prepared, recyclable sodium carboxymethyl cellulose-ammonium phosphomolybdate composite (CMC-AMP) was synthesized by chemical cross-linking and used for Cs+ removal. The effects of adsorbent dosage, pH value, initial Cs+ concentration, contact time, temperature and competitive ions on adsorption were investigated. The results showed that CMC-AMP with good mechanical properties could effectively adsorb Cs+ in a wide pH range. In addition, the adsorption process of CMC-AMP was better fitted with the Lagergren first-second model and Langmuir isotherm model. Furthermore, CMC-AMP can be reused five times using ammonium chloride as the eluent without an obvious decrease in absorption activity. The results reveal that CMC-AMP can be used as a low cost and recyclable Cs+ adsorbent.

14.
J Hazard Mater ; 371: 694-704, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30897489

ABSTRACT

A novel ammonium molybdophosphate (AMP)/ polyvinyl alcohol (PVA)/ sodium alginate (SA) composite hydrogel (APS) was prepared for Cs+ removal and enrichment from radioactive wastewater. Batch experiments with the subject of AMP concentration, pH value, initial Cs+ concentration, contact time, temperature, competing ions were investigated. The results showed this APS hydrogel with high permeability and stability could effectively adsorb Cs+ at widely broad pH value range and low Cs+ concentration within a short time. Adsorption thermodynamic parameters indicated the endothermic and spontaneous nature of the adsorption process, and the Lagergren pseudo-second order model was found to exhibit the best correlation with the adsorption results. Equilibrium data was better described by the Langmuir isotherm equation, and the maximum adsorption capacity of APS hydrogel calculated was in consistent with the experimental results. Furthermore, the APS hydrogel could be easily reused at least five times without obvious decrease in absorption activity and selectivity using ammonia nitrate as the eluent, and what's more, the Cs+ concentration in eluent was approximately concentrated for 2 times after single cycle. All the results suggest that the environmental friendly and low-cost APS hydrogel could be used as effective and selective material for Cs+ removal and enrichment from wastewater.

15.
ChemSusChem ; 11(24): 4219-4225, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30430719

ABSTRACT

The efficient transformation of CO2 into value-added chemicals with green, abundant, and cheap catalysts is an interesting and challenging topic in both green and sustainable chemistry. In this study, a series of salt-lake brines were used for the first time to catalyze the reaction of CO2 and a broad range of 2-aminobenzonitriles to form the corresponding quinazoline-2,4(1 H,3 H)-diones. It was found that the abundant, available, and inexpensive Zhabuye basic salt-lake brine could efficiently promote the reaction of 2-aminobenzonitriles under low pressure of CO2 . Very high yields of value-added products were obtained. Further studies indicated that the basic carbonate and borate ions in the brine play key roles in accelerating the reactions.

16.
Chem Sci ; 8(8): 5669-5674, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28989605

ABSTRACT

We have proposed a strategy for the synthesis of N,N-dimethylanilines from nitrobenzene and its derivatives, CO2, and water via an electrochemical reaction under ambient conditions. H+ generated from H2O was used as the hydrogen source. Pd/Co-N/carbon, in which the Pd nanoparticles were supported on Co-N/carbon, was designed and used as the electrocatalyst. It was found that the electrocatalyst was very efficient for the reaction in MeCN solution with 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Bmim]Tf2N) as the supporting electrolyte and 1-amino-methylphosphonic acid (AMPA) as the thermal co-catalyst. A series of control experiments showed that Pd/Co-N/carbon and AMPA cooperated very well in accelerating the reaction. This synthetic route has some obvious advantages, such as using CO2 and water as the reactants, ambient reaction conditions, and high yields of the desired products. This opens up a way to synthesize chemicals by the combination of an electrocatalyst and a thermal catalyst with organic compounds, CO2, and water as the reactants.

17.
ChemSusChem ; 10(6): 1292-1297, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28070981

ABSTRACT

Synthesis of asymmetrical organic carbonates from the renewable and inexpensive CO2 is of great importance but also challenging, especially at ambient conditions. Herein, we found that some metal salt/ionic liquid catalyst systems were highly active for the synthesis of asymmetrical organic carbonates from CO2 , propargylic alcohols, and primary alcohols. Especially, the AgCl/1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) system was very efficient for the reactions of a wide range of substrates at room temperature and atmospheric pressure, and the yields of the asymmetrical organic carbonates could approach 100 %. The catalyst system could be reused at least five times without changing its catalytic performance, and could be easily recovered and reused. A detailed study indicated that AgCl and [Bmim][OAc] catalyzed the reactions cooperatively, resulting in unique catalytic performance.


Subject(s)
Carbon Dioxide/chemistry , Carbonates/chemistry , Carbonates/chemical synthesis , Imidazoles/chemistry , Ionic Liquids/chemistry , Silver Compounds/chemistry , Alkynes/chemistry , Catalysis , Chemistry Techniques, Synthetic , Propanols/chemistry
18.
Angew Chem Int Ed Engl ; 55(31): 9012-6, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27311592

ABSTRACT

Highly efficient electrochemical reduction of CO2 into value-added chemicals using cheap and easily prepared electrodes is environmentally and economically compelling. The first work on the electrocatalytic reduction of CO2 in ternary electrolytes containing ionic liquid, organic solvent, and H2 O is described. Addition of a small amount of H2 O to an ionic liquid/acetonitrile electrolyte mixture significantly enhanced the efficiency of the electrochemical reduction of CO2 into formic acid (HCOOH) on a Pb or Sn electrode, and the efficiency was extremely high using an ionic liquid/acetonitrile/H2 O ternary mixture. The partial current density for HCOOH reached 37.6 mA cm(-2) at a Faradaic efficiency of 91.6 %, which is much higher than all values reported to date for this reaction, including those using homogeneous and noble metal electrocatalysts. The reasons for such high efficiency were investigated using controlled experiments.

19.
Chem Sci ; 7(1): 266-273, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-29861981

ABSTRACT

Highly efficient electrochemical reduction of CO2 to CH4 is of great importance, but is challenging. Herein, Zn-1,3,5-benzenetricarboxylic acid metal-organic frameworks (Zn-BTC MOFs) deposited on carbon paper (CP) were used as cathodes in electrochemical reduction of CO2 using ionic liquids (ILs) as the electrolytes, which was the first work on combination of a MOF electrode and an pure IL electrolyte in the electrochemical reduction of CO2. It was found that the efficiency of the reaction depended strongly on the morphology of the Zn-MOFs. Compared with the commonly used metal electrodes, the electrochemical reaction showed much higher selectivity to CH4 and current density, and the overpotentials for CH4 is much lower. The excellent combination of the MOF cathodes and ILs opens a way for reduction of CO2 to CH4 effectively.

20.
Chemistry ; 21(45): 15924-8, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26365440

ABSTRACT

Both immobilization of Ag nanoparticles (AgNPs) of very small size on hierarchical porosity supports and carboxylative cyclization of propargyl alcohols with CO2 under ambient conditions are very interesting. In this work, we synthesized AgNPs supported on sulfonated macroreticular resin (SMR) with hierarchical pores in water/alcohol solutions. It was shown that the size of the AgNPs on the SMR could be tailored easily by altering the synthetic solutions, and very small AgNPs with narrow size distribution (1-3 nm) could be obtained in water/methanol solution. It was found that the AgNPs/SMR with small AgNPs was highly efficient and an easily recyclable catalyst for the synthesis of α-alkylidene cyclic carbonates by carboxylative cyclization of propargyl alcohols with CO2 at ambient pressure and temperature, which was the first work to use metal nanoparticles as the catalysts for the reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...