Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chin J Integr Med ; 28(4): 349-356, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35048242

ABSTRACT

OBJECTIVE: To explore the influences of andrographolide (Andro) on bladder cancer cell lines and a tumor xenograft mouse model bearing 5637 cells. METHODS: For in vitro experiments, T24 cells were stimulated with Andro (0-40 µmol/L) and 5637 cells were stimulated with Andro (0 to 80 µmol/L). Cell growth, migration, and infiltration were assessed using cell counting kit-8, colony formation, wound healing, and transwell assays. Apoptosis rate was examined using flow cytometry. In in vivo study, the antitumor effect of Andro (10 mg/kg) was evaluated by 5637 tumor-bearing mice, and levels of nuclear factor κ B (NF- κ B) and phosphoinositide 3-kinase/AKT related-proteins were determined by immunoblotting. RESULTS: Andro suppressed growth, migration, and infiltraion of bladder cancer cells (P⩽0.05 or P⩽0.01). Additionally, Andro induced intrinsic mitochondria-dependent apoptosis in bladder cancer cell lines. Furthermore, Andro inhibited bladder cancer growth in mice (P⩽0.01). The expression of p65, p-AKT were suppressed by Andro treatment in vitro and in vivo (P⩽0.05 or P⩽0.01). CONCLUSIONS: Andrographolide inhibits proliferation and promotes apoptosis in bladder cancer cells by interfering with NF- κ B and PI3K/AKT signaling in vitro and in vivo.


Subject(s)
Diterpenes , Urinary Bladder Neoplasms , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Diterpenes/pharmacology , Diterpenes/therapeutic use , Humans , Mice , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Urinary Bladder Neoplasms/drug therapy
2.
Physiol Res ; 67(4): 637-646, 2018 08 16.
Article in English | MEDLINE | ID: mdl-29750875

ABSTRACT

Ulinastatin [or called as urinary trypsin inhibitor (UTI)] plays a role in regulating neurological deficits evoked by transient cerebral ischemia. However, the underlying mechanisms still need to be determined. The present study was to examine the effects of UTI on autophagy, Nrf2-ARE and apoptosis signal pathway in the hippocampus in the process of neurological functions after cerebral ischemia using a rat model of cardiac arrest (CA). CA was induced by asphyxia followed by cardiopulmonary resuscitation (CPR) in rats. Western blot analysis was employed to determine the expression of representative autophagy (namely, Atg5, LC3, Beclin 1), p62 protein (a maker of autophagic flux), and Nrf2-ARE pathways. Neuronal apoptosis was assessed by determining expression levels of Caspase-3 and Caspase-9, and by examining terminal deoxynucleotide transferase-mediated dUTP nick-end labeling (TUNEL). The modified neurological severity score (mNSS) and spatial working memory performance were used to assess neurological deficiencies in CA rats. Our results show that CA amplified autophagy and apoptotic Caspase-3/Caspase-9, and downregulated Nrf2-ARE pathway in the hippocampus CA1 region. Systemic administration of UTI attenuated autophagy and apoptosis, and largely restored Nrf2-ARE signal pathway following cerebral ischemia and thereby alleviated neurological deficits with increasing survival of CA rats. Our data suggest that UTI improves the worsened protein expression of autophagy and apoptosis, and restores Nrf2-ARE signals in the hippocampus and this is linked to inhibition of neurological deficiencies in transient cerebral ischemia. UTI plays a beneficial role in modulating neurological deficits induced by transient cerebral ischemia via central autophagy, apoptosis and Nrf2-ARE mechanisms.


Subject(s)
Antioxidant Response Elements/physiology , Glycoproteins/therapeutic use , Hippocampus/metabolism , Ischemic Attack, Transient/metabolism , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/therapeutic use , Animals , Antioxidant Response Elements/drug effects , Apoptosis/drug effects , Apoptosis/physiology , Autophagy/drug effects , Autophagy/physiology , Glycoproteins/pharmacology , Hippocampus/drug effects , Hippocampus/pathology , Ischemic Attack, Transient/drug therapy , Ischemic Attack, Transient/pathology , Male , Neuroprotective Agents/pharmacology , Random Allocation , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiology , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/therapeutic use
4.
Transl Neurosci ; 7(1): 158-163, 2016.
Article in English | MEDLINE | ID: mdl-28123836

ABSTRACT

Ulinastatin [urinary trypsin inhibitor (UTI)] plays an important role in the protection of organs against ischemic injury during severe inflammation. The purposes of this study were to examine the effects of UTI on the levels of pro-inflammatory cytokines (PICs) and protein expression of PIC receptors in the neocortex and hippocampus CA1 region of rats after transient global ischemia induced via cardiac arrest (CA). Specifcally, interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were analyzed. CA was induced by asphyxia followed by cardiopulmonary resuscitation in rats. ELISA and western blot analysis were employed to determine PICs and their receptors in the neocortex and hippocampus. Our results show that IL-1ß, IL-6 and TNF-α were significantly elevated in the neocortex and hippocampal CA1 field after CA. This was accompanied with an increase in PIC receptors, namely IL-1R, IL-6R and TNFR1. Systemic injection of UTI attenuated the amplification of PIC signal pathways in these brain regions. UTI also improved the modified Neurological Severity Score and brain tissue edema in CA rats. Notably, UTI resulted in an increase in survival of CA rats as compared to CA rats without treatment. In conclusion, UTI plays a beneficial role in modulating transient global ischemia induced by CA by altering PIC signal mechanisms, but further studies are needed to draw more firm conclusions.

SELECTION OF CITATIONS
SEARCH DETAIL
...