Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Neuropsychopharmacol ; 21(2): 175-186, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29020410

ABSTRACT

Background: Previous studies have shown that a low dose of scopolamine produces rapid-acting antidepressant-like actions in rodents. Understanding the mechanisms underlying this effect and the dose-dependent variations of drug responses remains an important task. L-type voltage-dependent calcium channels were found to mediate rapid-acting antidepressant effects of certain medications (e.g., ketamine). Therefore, it is of great interest to determine the involvement of L-type voltage-dependent calcium channels in the action of scopolamine. Methods: Herein, we investigated the mechanisms underlying behavioral responses to various doses of scopolamine in mice to clarify the involvement of L-type voltage-dependent calcium channels in its modes of action. Open field test, novel object recognition test, and forced swimming test were performed on mice administered varied doses of scopolamine (0.025, 0.05, 0.1, 1, and 3 mg/kg, i.p.) alone or combined with L-type voltage-dependent calcium channel blocker verapamil (5 mg/kg, i.p.). Then, the changes in brain-derived neurotrophic factor and neuropeptide VGF (nonacronymic) levels in the hippocampus and prefrontal cortex of these mice were analyzed. Results: Low doses of scopolamine (0.025 and 0.05 mg/kg) produced significant antidepressant-like effects in the forced swimming test, while higher doses (1 and 3 mg/kg) resulted in significant memory deficits and depressive-like behaviors. Moreover, the behavioral changes in responses to various doses may be related to the upregulation (0.025 and 0.05 mg/kg) and downregulation (1 and 3 mg/kg) of brain-derived neurotrophic factor and VGF in the hippocampus and prefrontal cortex in mice. We further found that the rapid-acting antidepressant-like effects and the upregulation on brain-derived neurotrophic factor and VGF produced by a low dose of scopolamine (0.025 mg/kg) were completely blocked by verapamil. Conclusions: These results indicate that L-type voltage-dependent calcium channels are likely involved in the behavioral changes in response to various doses of scopolamine through the regulation of brain-derived neurotrophic factor and VGF levels.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/drug effects , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Cognitive Dysfunction/chemically induced , Depression/chemically induced , Hippocampus/drug effects , Neuropeptides/drug effects , Prefrontal Cortex/drug effects , Scopolamine/pharmacology , Verapamil/pharmacology , Animals , Antidepressive Agents/administration & dosage , Calcium Channel Blockers/administration & dosage , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Nerve Growth Factors , Scopolamine/administration & dosage , Verapamil/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL