Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS One ; 16(9): e0250539, 2021.
Article in English | MEDLINE | ID: mdl-34587190

ABSTRACT

Dysregulated expression of the secretory protein renalase can promote pancreatic ductal adenocarcinoma (PDAC) growth in animal models. We characterized renalase expression in premalignant and malignant PDAC tissue and investigated whether plasma renalase levels corresponded to clinical PDAC characteristics. Renalase immunohistochemistry was used to determine the presence and distribution of renalase in normal pancreas, chronic pancreatitis, PDAC precursor lesions, and PDAC tissues. Associations between pretreatment plasma renalase and PDAC clinical status were assessed in patients with varied clinical stages of PDAC and included tumor characteristics, surgical resection in locally advanced/borderline resectable PDAC, and overall survival. Data were retrospectively obtained and correlated using non-parametric analysis. Little to no renalase was detected by histochemistry in the normal pancreatic head in the absence of abdominal trauma. In chronic pancreatitis, renalase immunoreactivity localized to peri-acinar spindle-shaped cells in some samples. It was also widely present in PDAC precursor lesions and PDAC tissue. Among 240 patients with PDAC, elevated plasma renalase levels were associated with worse tumor characteristics, including greater angiolymphatic invasion (80.0% vs. 58.1%, p = 0.012) and greater node positive disease (76.5% vs. 56.5%, p = 0.024). Overall survival was worse in patients with high plasma renalase levels with median follow-up of 27.70 months vs. 65.03 months (p < 0.001). Renalase levels also predicted whether patients with locally advanced/borderline resectable PDAC underwent resection (AUC 0.674; 95%CI 0.42-0.82, p = 0.04). Overall tissue renalase was increased in both premalignant and malignant PDAC tissues compared to normal pancreas. Elevated plasma renalase levels were associated with advanced tumor characteristics, decreased overall survival, and reduced resectability in patients with locally advanced/borderline resectable PDAC. These studies show that renalase levels are increased in premalignant pancreatic tissues and that its levels in plasma correspond to the clinical behavior of PDAC.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal/pathology , Monoamine Oxidase/blood , Pancreatic Neoplasms/pathology , Up-Regulation , Adult , Aged , Aged, 80 and over , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/mortality , Case-Control Studies , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Neoplasm Grading , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/mortality , Prognosis , Prospective Studies , Retrospective Studies , Survival Analysis , Young Adult , Pancreatic Neoplasms
2.
Sci Rep ; 8(1): 4097, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29511269

ABSTRACT

Preclinical in vitro models provide an essential tool to study cancer cell biology as well as aid in translational research, including drug target identification and drug discovery efforts. For any model to be clinically relevant, it needs to recapitulate the biology and cell heterogeneity of the primary tumor. We recently developed and described a conditional reprogramming (CR) cell technology that addresses many of these needs and avoids the deficiencies of most current cancer cell lines, which are usually clonal in origin. Here, we used the CR cell method to generate a collection of patient-derived cell cultures from non-small cell lung cancers (NSCLC). Whole exome sequencing and copy number variations are used for the first time to address the capability of CR cells to keep their tumor-derived heterogeneity. Our results indicated that these primary cultures largely maintained the molecular characteristics of the original tumors. Using a mutant-allele tumor heterogeneity (MATH) score, we showed that CR cells are able to keep and maintain most of the intra-tumoral heterogeneity, suggesting oligoclonality of these cultures. CR cultures therefore represent a pre-clinical lung cancer model for future basic and translational studies.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cellular Reprogramming Techniques/methods , Genetic Heterogeneity , Gene Dosage , Humans , Models, Biological , Tumor Cells, Cultured , Whole Genome Sequencing
3.
ACS Chem Neurosci ; 7(12): 1635-1640, 2016 12 21.
Article in English | MEDLINE | ID: mdl-27744678

ABSTRACT

Combination studies of neurokinin 1 (NK1) receptor antagonists and serotonin-selective reuptake inhibitors (SSRIs) have shown promise in preclinical models of depression. Such a combination may offer important advantages over the current standard of care. Herein we describe the discovery and optimization of an indazole-based chemotype to provide a series of potent dual NK1 receptor antagonists/serotonin transporter (SERT) inhibitors to overcome issues of ion channel blockade. This effort culminated in the identification of compound 9, an analogue that demonstrated favorable oral bioavailability, excellent brain uptake, and robust in vivo efficacy in a validated depression model. Over the course of this work, a novel heterocycle-directed asymmetric hydrogenation was developed to facilitate installation of the key stereogenic center.


Subject(s)
Antidepressive Agents/pharmacology , Indazoles/pharmacology , Neurokinin-1 Receptor Antagonists/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Administration, Oral , Animals , Antidepressive Agents/chemical synthesis , Antidepressive Agents/chemistry , Antidepressive Agents/toxicity , Depressive Disorder/drug therapy , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Discovery , Drug Evaluation, Preclinical , Gerbillinae , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Indazoles/toxicity , Mice , Molecular Structure , Neurokinin-1 Receptor Antagonists/chemical synthesis , Neurokinin-1 Receptor Antagonists/chemistry , Neurokinin-1 Receptor Antagonists/toxicity , Rats , Receptors, Neurokinin-1/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/toxicity , Structure-Activity Relationship , Transcriptional Regulator ERG/metabolism
4.
Bioorg Med Chem Lett ; 25(15): 3039-43, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26048800

ABSTRACT

Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection.


Subject(s)
Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Neurokinin-1 Receptor Antagonists/chemistry , Neurokinin-1 Receptor Antagonists/pharmacology , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacokinetics , Antidepressive Agents/pharmacology , Biphenyl Compounds/pharmacokinetics , Brain/drug effects , Brain/metabolism , Depression/drug therapy , Depression/metabolism , Gerbillinae , Humans , Neurokinin-1 Receptor Antagonists/pharmacokinetics , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...