Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4928, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582836

ABSTRACT

Mutations in Atp2b2, an outer hair cell gene, cause dominant hearing loss in humans. Using a mouse model Atp2b2Obl/+, with a dominant hearing loss mutation (Oblivion), we show that liposome-mediated in vivo delivery of CRISPR-Cas9 ribonucleoprotein complexes leads to specific editing of the Obl allele. Large deletions encompassing the Obl locus and indels were identified as the result of editing. In vivo genome editing promotes outer hair cell survival and restores their function, leading to hearing recovery. We further show that in a double-dominant mutant mouse model, in which the Tmc1 Beethoven mutation and the Atp2b2 Oblivion mutation cause digenic genetic hearing loss, Cas9/sgRNA delivery targeting both mutations leads to partial hearing recovery. These findings suggest that liposome-RNP delivery can be used as a strategy to recover hearing with dominant mutations in OHC genes and with digenic mutations in the auditory hair cells, potentially expanding therapeutics of gene editing to treat hearing loss.


Subject(s)
Deafness , Hearing Loss , Humans , CRISPR-Cas Systems/genetics , Ribonucleoproteins/genetics , Liposomes , RNA, Guide, CRISPR-Cas Systems , Hearing Loss/genetics , Hearing Loss/therapy , Deafness/genetics
2.
Nature ; 556(7699): 57-63, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29512652

ABSTRACT

A key limitation of the use of the CRISPR-Cas9 system for genome editing and other applications is the requirement that a protospacer adjacent motif (PAM) be present at the target site. For the most commonly used Cas9 from Streptococcus pyogenes (SpCas9), the required PAM sequence is NGG. No natural or engineered Cas9 variants that have been shown to function efficiently in mammalian cells offer a PAM less restrictive than NGG. Here we use phage-assisted continuous evolution to evolve an expanded PAM SpCas9 variant (xCas9) that can recognize a broad range of PAM sequences including NG, GAA and GAT. The PAM compatibility of xCas9 is the broadest reported, to our knowledge, among Cas9 proteins that are active in mammalian cells, and supports applications in human cells including targeted transcriptional activation, nuclease-mediated gene disruption, and cytidine and adenine base editing. Notably, despite its broadened PAM compatibility, xCas9 has much greater DNA specificity than SpCas9, with substantially lower genome-wide off-target activity at all NGG target sites tested, as well as minimal off-target activity when targeting genomic sites with non-NGG PAMs. These findings expand the DNA targeting scope of CRISPR systems and establish that there is no necessary trade-off between Cas9 editing efficiency, PAM compatibility and DNA specificity.


Subject(s)
CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , DNA/genetics , DNA/metabolism , Gene Editing/methods , Mutation , Substrate Specificity/genetics , DNA Cleavage , Deoxyribonucleases/metabolism , Directed Molecular Evolution , Genome, Human/genetics , HEK293 Cells , Humans , Nucleotide Motifs , Streptococcus pyogenes/enzymology , Streptococcus pyogenes/genetics , Transcriptional Activation
3.
Curr Protoc Hum Genet ; 96: 21.11.1-21.11.20, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29364519

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) can be used to mass produce surrogates of human tissues, enabling new advances in drug screening, disease modeling, and cell therapy. Recent developments in clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing technology use homology-directed repair (HDR) to efficiently generate custom hiPSC lines harboring a variety of genomic insertions and deletions. Thus, hiPSCs that encode an endogenous protein fused to a fluorescent reporter protein can be rapidly created by employing CRISPR/Cas9 genome editing, enhancing HDR efficiency and optimizing homology arm length. These fluorescently tagged hiPSCs can be used to visualize protein function and dynamics in real time as cells proliferate and differentiate. Given that nearly any intracellular protein can be fluorescently tagged, this system serves as a powerful tool to facilitate new discoveries across many biological disciplines. In this unit, we present protocols for the design, generation, and monoclonal expansion of genetically customized hiPSCs encoding fluorescently tagged endogenous proteins. © 2018 by John Wiley & Sons, Inc.


Subject(s)
CRISPR-Cas Systems/genetics , Genetic Therapy , Induced Pluripotent Stem Cells/cytology , Recombinational DNA Repair/genetics , Fluorescence , Gene Editing , Genome, Human/genetics , Humans
4.
Nature ; 553(7687): 217-221, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29258297

ABSTRACT

Although genetic factors contribute to almost half of all cases of deafness, treatment options for genetic deafness are limited. We developed a genome-editing approach to target a dominantly inherited form of genetic deafness. Here we show that cationic lipid-mediated in vivo delivery of Cas9-guide RNA complexes can ameliorate hearing loss in a mouse model of human genetic deafness. We designed and validated, both in vitro and in primary fibroblasts, genome editing agents that preferentially disrupt the dominant deafness-associated allele in the Tmc1 (transmembrane channel-like gene family 1) Beethoven (Bth) mouse model, even though the mutant Tmc1Bth allele differs from the wild-type allele at only a single base pair. Injection of Cas9-guide RNA-lipid complexes targeting the Tmc1Bth allele into the cochlea of neonatal Tmc1Bth/+ mice substantially reduced progressive hearing loss. We observed higher hair cell survival rates and lower auditory brainstem response thresholds in injected ears than in uninjected ears or ears injected with control complexes that targeted an unrelated gene. Enhanced acoustic startle responses were observed among injected compared to uninjected Tmc1Bth/+ mice. These findings suggest that protein-RNA complex delivery of target gene-disrupting agents in vivo is a potential strategy for the treatment of some types of autosomal-dominant hearing loss.


Subject(s)
CRISPR-Associated Proteins/administration & dosage , Gene Editing/methods , Genes, Dominant/genetics , Genetic Therapy/methods , Hearing Loss/genetics , Acoustic Stimulation , Alleles , Animals , Animals, Newborn , Auditory Threshold , Base Sequence , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/therapeutic use , CRISPR-Cas Systems , Cell Survival , Cochlea/cytology , Cochlea/metabolism , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem , Female , Fibroblasts , Hair Cells, Auditory/cytology , Hearing Loss/physiopathology , Hearing Loss/prevention & control , Humans , Liposomes , Male , Membrane Proteins/genetics , Mice , Reflex, Startle
5.
Nat Commun ; 8: 15939, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28656978

ABSTRACT

Programmable sequence-specific genome editing agents such as CRISPR-Cas9 have greatly advanced our ability to manipulate the human genome. Although canonical forms of genome-editing agents and programmable transcriptional regulators are constitutively active, precise temporal and spatial control over genome editing and transcriptional regulation activities would enable the more selective and potentially safer use of these powerful technologies. Here, by incorporating ligand-responsive self-cleaving catalytic RNAs (aptazymes) into guide RNAs, we developed a set of aptazyme-embedded guide RNAs that enable small molecule-controlled nuclease-mediated genome editing and small molecule-controlled base editing, as well as small molecule-dependent transcriptional activation in mammalian cells.


Subject(s)
Gene Editing , RNA, Catalytic/metabolism , RNA, Guide, Kinetoplastida/metabolism , Transcriptional Activation , CRISPR-Cas Systems , HEK293 Cells , Humans , Ligands , Nucleic Acid Conformation , RNA, Catalytic/genetics , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics
6.
Nucleic Acids Res ; 44(20): 9758-9770, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27515511

ABSTRACT

We describe the development of 'recCas9', an RNA-programmed small serine recombinase that functions in mammalian cells. We fused a catalytically inactive dCas9 to the catalytic domain of Gin recombinase using an optimized fusion architecture. The resulting recCas9 system recombines DNA sites containing a minimal recombinase core site flanked by guide RNA-specified sequences. We show that these recombinases can operate on DNA sites in mammalian cells identical to genomic loci naturally found in the human genome in a manner that is dependent on the guide RNA sequences. DNA sequencing reveals that recCas9 catalyzes guide RNA-dependent recombination in human cells with an efficiency as high as 32% on plasmid substrates. Finally, we demonstrate that recCas9 expressed in human cells can catalyze in situ deletion between two genomic sites. Because recCas9 directly catalyzes recombination, it generates virtually no detectable indels or other stochastic DNA modification products. This work represents a step toward programmable, scarless genome editing in unmodified cells that is independent of endogenous cellular machinery or cell state. Current and future generations of recCas9 may facilitate targeted agricultural breeding, or the study and treatment of human genetic diseases.


Subject(s)
DNA Nucleotidyltransferases/metabolism , DNA/genetics , DNA/metabolism , Endonucleases/metabolism , Recombinant Fusion Proteins/metabolism , Animals , Binding Sites , Cell Line , DNA Nucleotidyltransferases/genetics , Endonucleases/genetics , Gene Order , Genome, Human , Humans , Models, Biological , Plasmids/genetics , Protein Binding , Recombinant Fusion Proteins/genetics , Recombination, Genetic , Sequence Deletion
7.
Cell Chem Biol ; 23(1): 57-73, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26933736

ABSTRACT

Programmable DNA nucleases have provided scientists with the unprecedented ability to probe, regulate, and manipulate the human genome. Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeat-Cas9 system (CRISPR-Cas9) represent a powerful array of tools that can bind to and cleave a specified DNA sequence. In their canonical forms, these nucleases induce double-strand breaks at a DNA locus of interest that can trigger cellular DNA repair processes that disrupt or replace genes. The fusion of these programmable nucleases with a variety of other protein domains has led to a rapidly growing suite of tools for activating, repressing, visualizing, and modifying loci of interest. Maximizing the usefulness and therapeutic relevance of these tools, however, requires precisely controlling their activity and specificity to minimize potentially toxic side effects arising from off-target activities. This need has motivated the application of chemical biology principles and methods to genome-editing proteins, including the engineering of variants of these proteins with improved or altered specificities, and the development of genetic, chemical, optical, and protein delivery methods that control the activity of these agents in cells. Advancing the capabilities, safety, effectiveness, and therapeutic relevance of genome-engineering proteins will continue to rely on chemical biology strategies that manipulate their activity, specificity, and localization.


Subject(s)
Deoxyribonucleases/metabolism , Genetic Engineering/methods , Animals , Base Sequence , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA/genetics , DNA/metabolism , Deoxyribonucleases/genetics , Genome , Humans
8.
Nat Biotechnol ; 33(1): 73-80, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25357182

ABSTRACT

Efficient intracellular delivery of proteins is needed to fully realize the potential of protein therapeutics. Current methods of protein delivery commonly suffer from low tolerance for serum, poor endosomal escape and limited in vivo efficacy. Here we report that common cationic lipid nucleic acid transfection reagents can potently deliver proteins that are fused to negatively supercharged proteins, that contain natural anionic domains or that natively bind to anionic nucleic acids. This approach mediates the potent delivery of nM concentrations of Cre recombinase, TALE- and Cas9-based transcription activators, and Cas9:sgRNA nuclease complexes into cultured human cells in media containing 10% serum. Delivery of unmodified Cas9:sgRNA complexes resulted in up to 80% genome modification with substantially higher specificity compared to DNA transfection. This approach also mediated efficient delivery of Cre recombinase and Cas9:sgRNA complexes into the mouse inner ear in vivo, achieving 90% Cre-mediated recombination and 20% Cas9-mediated genome modification in hair cells.


Subject(s)
Lipids/administration & dosage , Proteins/administration & dosage , Cations , In Vitro Techniques , Trans-Activators/administration & dosage , Transfection
9.
Nat Struct Mol Biol ; 19(3): 291-8, 2012 Feb 05.
Article in English | MEDLINE | ID: mdl-22307053

ABSTRACT

Nucleotide excision repair (NER) is used by all organisms to eliminate DNA lesions. We determined the structure of the Geobacillus stearothermophilus UvrA-UvrB complex, the damage-sensor in bacterial NER and a new structure of UvrA. We observe that the DNA binding surface of UvrA, previously found in an open shape that binds damaged DNA, also exists in a closed groove shape compatible with native DNA only. The sensor contains two UvrB molecules that flank the UvrA dimer along the predicted path for DNA, ~80 Å from the lesion. We show that the conserved signature domain II of UvrA mediates a nexus of contacts among UvrA, UvrB and DNA. Further, in our new structure of UvrA, this domain adopts an altered conformation while an adjacent nucleotide binding site is vacant. Our findings raise unanticipated questions about NER and also suggest a revised picture of its early stages.


Subject(s)
Adenosine Triphosphatases/chemistry , DNA Damage , DNA, Bacterial/chemistry , DNA-Binding Proteins/chemistry , Geobacillus stearothermophilus/enzymology , Nucleic Acid Conformation , Adenosine Triphosphatases/metabolism , DNA, Bacterial/genetics , DNA-Binding Proteins/metabolism , Geobacillus stearothermophilus/genetics , Models, Molecular , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Quaternary
SELECTION OF CITATIONS
SEARCH DETAIL
...