Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2400627, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724020

ABSTRACT

Programmable and reconfigurable optics hold significant potential for transforming a broad spectrum of applications, spanning space explorations to biomedical imaging, gas sensing, and optical cloaking. The ability to adjust the optical properties of components like filters, lenses, and beam steering devices could result in dramatic reductions in size, weight, and power consumption in future optoelectronic devices. Among the potential candidates for reconfigurable optics, chalcogenide-based phase change materials (PCMs) offer great promise due to their non-volatile and analogue switching characteristics. Although PCM have found widespread use in electronic data storage, these memory devices are deeply sub-micron-sized. To incorporate phase change materials into free-space optical components, it is essential to scale them up to beyond several hundreds of microns while maintaining reliable switching characteristics. This study demonstrated a non-mechanical, non-volatile transmissive filter based on low-loss PCMs with a 200 µm×200 µm switching area. The device/metafilter can be consistently switched between low- and high-transmission states using electrical pulses with a switching contrast ratio of 5.5 dB. The device was reversibly switched for 1250 cycles before accelerated degradation took place. The work represents an important step toward realizing free-space reconfigurable optics based on PCMs. This article is protected by copyright. All rights reserved.

2.
Nat Commun ; 15(1): 3820, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744833

ABSTRACT

Lead (Pb2+) toxification is a concerning, unaddressed global public health crisis that leads to 1 million deaths annually. Yet, public policies to address this issue have fallen short. This work harnesses the unique abilities of crown ethers, which selectively bind to specific ions. This study demonstrates the synergistic integration of highly-scalable silicon photonics, with crown ether amine conjugation via Fischer esterification in an environmentally-friendly fashion. This realizes an integrated photonic platform that enables the in-operando, highly-selective and quantitative detection of various ions. The development dispels the existing notion that Fischer esterification is restricted to organic compounds, facilitating the subsequent amine conjugation for various crown ethers. The presented platform is specifically engineered for selective Pb2+ detection, demonstrating a large dynamic detection range, and applicability to field samples. The compatibility of this platform with cost-effective manufacturing indicates the potential for pervasive implementation of the integrated photonic sensor technology to safeguard against societal Pb2+ poisoning.

3.
Opt Express ; 32(7): 11681-11692, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571010

ABSTRACT

Quantum cascade lasers (QCLs) are ubiquitous mid-infrared sources owing to their flexible designs and compact footprints. Manufacturing multiwavelength QCL chips with high power levels and good beam quality is highly desirable for many applications. In this study, we demonstrate an λ ∼ 4.9 µm monolithic, wavelength beam-combined (WBC) infrared laser source by integrating on a single chip array of five QCL gain sections with an arrayed waveguide grating (AWG). Optical feedback from the cleaved facets enables lasing, whereas the integrated AWG locks the emission spectrum of each gain section to its corresponding input channel wavelength and spatially combines their signals into a single-output waveguide. Our chip features high peak power from the common aperture exceeding 0.6 W for each input channel, with a side-mode suppression ratio (SMSR) of over 27 dB when operated in pulsed mode. Our active/passive integration approach allows for a seamless transition from the QCL ridges to the AWG without requiring regrowth or evanescent coupling schemes, leading to a robust design. These results pave the way for the development of highly compact mid-IR sources suitable for applications such as hyperspectral imaging.

5.
NPJ Microgravity ; 10(1): 20, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378811

ABSTRACT

Recent growth in space systems has seen increasing capabilities packed into smaller and lighter Earth observation and deep space mission spacecraft. Phase-change materials (PCMs) are nonvolatile, reconfigurable, fast-switching, and have recently shown a high degree of space radiation tolerance, thereby making them an attractive materials platform for spaceborne photonics applications. They promise robust, lightweight, and energy-efficient reconfigurable optical systems whose functions can be dynamically defined on-demand and on-orbit to deliver enhanced science or mission support in harsh environments on lean power budgets. This comment aims to discuss the recent advances in rapidly growing PCM research and its potential to transition from conventional terrestrial optoelectronics materials platforms to versatile spaceborne photonic materials platforms for current and next-generation space and science missions. Materials International Space Station Experiment-14 (MISSE-14) mission-flown PCMs outside of the International Space Station (ISS) and key results and NASA examples are highlighted to provide strong evidence of the applicability of spaceborne photonics.

6.
Nano Lett ; 24(1): 97-103, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38127716

ABSTRACT

The programmable photonic integrated circuit (PIC) is an enabling technology behind optical interconnects and quantum information processing. Conventionally, the programmability of PICs is driven by the thermo-optic effect, free carrier dispersion, or mechanical tuning. These effects afford either high speed or a large extinction ratio, but all require constant power or bias to maintain the states, which is undesirable for programmability with infrequent switching. Recent progress in programmable PICs based on nonvolatile phase-change materials (PCMs) offers an attractive solution to a truly "set-and-forget" switch that requires zero static energy. Here, we report an essential building block of large-scale programmable PICs─a racetrack resonator with independent control of coupling and phase. We changed the resonance extinction ratio (ER) without perturbing the resonance wavelength, leveraging a programmable unit based on a directional coupler and a low-loss PCM Sb2Se3. The unit is only 33-µm-long and has an operating bandwidth over 50 nm, a low insertion loss (∼0.36 dB), high ER (∼15 dB), and excellent fabrication yield of over 1000 cycles endurance across nine switches. The work is a crucial step toward future large-scale energy-efficient programmable PICs.

8.
iScience ; 26(10): 107946, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37854690

ABSTRACT

Phase Change Materials (PCMs) have demonstrated tremendous potential as a platform for achieving diverse functionalities in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum, ranging from terahertz to visible frequencies. This comprehensive roadmap reviews the material and device aspects of PCMs, and their diverse applications in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum. It discusses various device configurations and optimization techniques, including deep learning-based metasurface design. The integration of PCMs with Photonic Integrated Circuits and advanced electric-driven PCMs are explored. PCMs hold great promise for multifunctional device development, including applications in non-volatile memory, optical data storage, photonics, energy harvesting, biomedical technology, neuromorphic computing, thermal management, and flexible electronics.

9.
ACS Photonics ; 10(10): 3576-3585, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37869555

ABSTRACT

Optical phase-change materials are highly promising for emerging applications such as tunable metasurfaces, reconfigurable photonic circuits, and non-von Neumann computing. However, these materials typically require both high melting temperatures and fast quenching rates to reversibly switch between their crystalline and amorphous phases: a significant challenge for large-scale integration. In this work, we use temperature-dependent ellipsometry to study the thermo-optic effect in GST and use these results to demonstrate an experimental technique that leverages the thermo-optic effect in GST to enable both spatial and temporal thermal measurements of two common electro-thermal microheater designs currently used by the phase-change community. Our approach shows excellent agreement between experimental results and numerical simulations and provides a noninvasive method for rapid characterization of electrically programmable phase-change devices.

10.
Light Sci Appl ; 12(1): 189, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528100

ABSTRACT

Photonic Random-Access Memories (P-RAM) are an essential component for the on-chip non-von Neumann photonic computing by eliminating optoelectronic conversion losses in data links. Emerging Phase-Change Materials (PCMs) have been showed multilevel memory capability, but demonstrations still yield relatively high optical loss and require cumbersome WRITE-ERASE approaches increasing power consumption and system package challenges. Here we demonstrate a multistate electrically programmed low-loss nonvolatile photonic memory based on a broadband transparent phase-change material (Ge2Sb2Se5, GSSe) with ultralow absorption in the amorphous state. A zero-static-power and electrically programmed multi-bit P-RAM is demonstrated on a silicon-on-insulator platform, featuring efficient amplitude modulation up to 0.2 dB/µm and an ultralow insertion loss of total 0.12 dB for a 4-bit memory showing a 100× improved signal to loss ratio compared to other phase-change-materials based photonic memories. We further optimize the positioning of dual microheaters validating performance tradeoffs. Experimentally we demonstrate a half-a-million cyclability test showcasing the robust approach of this material and device. Low-loss photonic retention-of-state adds a key feature for photonic functional and programmable circuits impacting many applications including neural networks, LiDAR, and sensors for example.

11.
Small ; 19(50): e2304145, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37649187

ABSTRACT

Reconfigurable or programmable photonic devices are rapidly growing and have become an integral part of many optical systems. The ability to selectively modulate electromagnetic waves through electrical stimuli is crucial in the advancement of a variety of applications from data communication and computing devices to environmental science and space explorations. Chalcogenide-based phase-change materials (PCMs) are one of the most promising material candidates for reconfigurable photonics due to their large optical contrast between their different solid-state structural phases. Although significant efforts have been devoted to accurate simulation of PCM-based devices, in this paper, three important aspects which have often evaded prior models yet having significant impacts on the thermal and phase transition behavior of these devices are highlighted: the enthalpy of fusion, the heat capacity change upon glass transition, as well as the thermal conductivity of liquid-phase PCMs. The important topic of switching energy scaling in PCM devices, which also helps explain why the three above-mentioned effects have long been overlooked in electronic PCM memories but only become important in photonics, is further investigated. These findings offer insight to facilitate accurate modeling of PCM-based photonic devices and can inform the development of more efficient reconfigurable optics.

12.
Opt Express ; 31(3): 5056-5068, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36785457

ABSTRACT

Photonic integrated circuits and mid-infrared quantum cascade lasers have attracted significant attention over the years because of the numerous applications enabled by these compact semiconductor chips. In this paper, we demonstrate low loss passive waveguides and highly efficient arrayed waveguide gratings that can be used, for example, to beam combine infrared (IR) laser arrays. The waveguide structure used consists of an In0.53Ga0.47As core and InP cladding layers. This material system was chosen because of its compatibility with future monolithic integration with quantum cascade lasers. Different photonic circuits were fabricated using standard semiconductor processes, and experiments conducted with these chips demonstrated low-loss waveguides with an estimated propagation loss of ∼ 1.2 dB/cm as well as micro-ring resonators with an intrinsic Q-factor of 174,000. Arrayed waveguide gratings operating in the 5.15-5.34 µm range feature low insertion loss and non-uniformity of ∼ 0.9 dB and ∼ 0.6 dB, respectively. The demonstration of the present photonic circuits paves the path toward monolithic fabrication of compact infrared light sources with advanced functionalities beneficial to many chemical sensing and high-power applications.

13.
Nat Nanotechnol ; 17(8): 842-848, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35788188

ABSTRACT

Silicon photonics is evolving from laboratory research to real-world applications with the potential to transform many technologies, including optical neural networks and quantum information processing. A key element for these applications is a reconfigurable switch operating at ultra-low programming energy-a challenging proposition for traditional thermo-optic or free carrier switches. Recent advances in non-volatile programmable silicon photonics based on phase-change materials (PCMs) provide an attractive solution to energy-efficient photonic switches with zero static power, but the programming energy density remains high (hundreds of attojoules per cubic nanometre). Here we demonstrate a non-volatile electrically reconfigurable silicon photonic platform leveraging a monolayer graphene heater with high energy efficiency and endurance. In particular, we show a broadband switch based on the technologically mature PCM Ge2Sb2Te5 and a phase shifter employing the emerging low-loss PCM Sb2Se3. The graphene-assisted photonic switches exhibited an endurance of over 1,000 cycles and a programming energy density of 8.7 ± 1.4 aJ nm-3, that is, within an order of magnitude of the PCM thermodynamic switching energy limit (~1.2 aJ nm-3) and at least a 20-fold reduction in switching energy compared with the state of the art. Our work shows that graphene is a reliable and energy-efficient heater compatible with dielectric platforms, including Si3N4, for technologically relevant non-volatile programmable silicon photonics.

14.
Nat Commun ; 13(1): 3915, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35798746

ABSTRACT

The development of compact and fieldable mid-infrared (mid-IR) spectroscopy devices represents a critical challenge for distributed sensing with applications from gas leak detection to environmental monitoring. Recent work has focused on mid-IR photonic integrated circuit (PIC) sensing platforms and waveguide-integrated mid-IR light sources and detectors based on semiconductors such as PbTe, black phosphorus and tellurene. However, material bandgaps and reliance on SiO2 substrates limit operation to wavelengths λ ≲ 4 µm. Here we overcome these challenges with a chalcogenide glass-on-CaF2 PIC architecture incorporating split-gate photothermoelectric graphene photodetectors. Our design extends operation to λ = 5.2 µm with a Johnson noise-limited noise-equivalent power of 1.1 nW/Hz1/2, no fall-off in photoresponse up to f = 1 MHz, and a predicted 3-dB bandwidth of f3dB > 1 GHz. This mid-IR PIC platform readily extends to longer wavelengths and opens the door to applications from distributed gas sensing and portable dual comb spectroscopy to weather-resilient free space optical communications.

15.
Nanoscale Horiz ; 7(3): 267-275, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-34908075

ABSTRACT

Developments in the field of nanoplasmonics have the potential to advance applications from information processing and telecommunications to light-based sensing. Traditionally, nanoscale noble metals such as gold and silver have been used to achieve the targeted enhancements in light-matter interactions that result from the presence of localized surface plasmons (LSPs). However, interest has recently shifted to intrinsically doped semiconductor nanocrystals (NCs) for their ability to display LSP resonances (LSPRs) over a much broader spectral range, including the infrared (IR). Among semiconducting plasmonic NCs, spinel metal oxides (sp-MOs) are an emerging class of materials with distinct advantages in accessing the telecommunications bands in the IR and affording useful environmental stability. Here, we report the plasmonic properties of Fe3O4 sp-MO NCs, known previously only for their magnetic functionality, and demonstrate their ability to modify the light-emission properties of telecom-emitting quantum dots (QDs). We establish the synthetic conditions for tuning sp-MO NC size, composition and doping characteristics, resulting in unprecedented tunability of electronic behavior and plasmonic response over 450 nm. In particular, with diameter-dependent variations in free-electron concentration across the Fe3O4 NC series, we introduce a strong NC size dependency onto the optical response. In addition, our observation of plasmonics-enhanced decay rates from telecom-emitting QDs reveals Purcell enhancement factors for simple plasmonic-spacer-emitter sandwich structures up to 51-fold, which are comparable to values achieved previously only for emitters in the visible range coupled with conventional noble metal NCs.

16.
Nat Commun ; 12(1): 7187, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34893593

ABSTRACT

Integrated nanophotonics is an emerging research direction that has attracted great interests for technologies ranging from classical to quantum computing. One of the key-components in the development of nanophotonic circuits is the phase-change unit that undergoes a solid-state phase transformation upon thermal excitation. The quaternary alloy, Ge2Sb2Se4Te, is one of the most promising material candidates for application in photonic circuits due to its broadband transparency and large optical contrast in the infrared spectrum. Here, we investigate the thermal properties of Ge2Sb2Se4Te and show that upon substituting tellurium with selenium, the thermal transport transitions from an electron dominated to a phonon dominated regime. By implementing an ultrafast mid-infrared pump-probe spectroscopy technique that allows for direct monitoring of electronic and vibrational energy carrier lifetimes in these materials, we find that this reduction in thermal conductivity is a result of a drastic change in electronic lifetimes of Ge2Sb2Se4Te, leading to a transition from an electron-dominated to a phonon-dominated thermal transport mechanism upon selenium substitution. In addition to thermal conductivity measurements, we provide an extensive study on the thermophysical properties of Ge2Sb2Se4Te thin films such as thermal boundary conductance, specific heat, and sound speed from room temperature to 400 °C across varying thicknesses.

17.
Opt Lett ; 46(22): 5735-5738, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34780449

ABSTRACT

In this Letter, we adapt the direct search method to metasurface optimization. We show that the direct search algorithm, when coupled with deep learning techniques for free-form meta-atom generation, offers a computationally efficient optimization approach for metasurface optics. As an example, we apply the approach to optimization of achromatic metalenses. Taking advantage of the diverse dispersion responses of free-form meta-atoms, metalenses designed using this approach exhibit superior broadband performances compared to their multilevel diffractive counterparts. We further demonstrate an achromatic and wide-field-of-view metalens design.

18.
Opt Lett ; 46(10): 2324-2327, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33988574

ABSTRACT

We demonstrate a large-area fabrication process for optical metasurfaces utilizing reusable SiN on Si nanostencils. To improve the yield of the nanostencil fabrication, we partially etch the front-side SiN layer to transfer the metasurface pattern from the resist to the nanostencil membrane, preserving the integrity of the membrane during the subsequent potassium hydroxide etch. To enhance the reliability and resolution of metasurface fabrication using the nanostencil, we spin coat a sacrificial layer of resist to precisely determine the gap between the nanostencil and the metasurface substrate for the subsequent liftoff. 1.5 mm diameter PbTe meta-lenses on ${\rm{Ca}}{{\rm{F}}_2}$ fabricated using nanostencils show diffraction-limited focusing and focusing efficiencies of 42% for a 2 mm focal length lens and 53% for a 4 mm focal length lens. The nanostencils can also be cleaned using chemical cleaning methods for reuse.

19.
Nat Nanotechnol ; 16(6): 661-666, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33875868

ABSTRACT

Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability and functionality compared to their traditional bulk counterparts. Optical phase-change materials (PCMs) offer an appealing material solution for active metasurface devices with their large index contrast and non-volatile switching characteristics. Here we report a large-scale, electrically reconfigurable non-volatile metasurface platform based on optical PCMs. The optical PCM alloy used in the devices, Ge2Sb2Se4Te (GSST), uniquely combines giant non-volatile index modulation capability, broadband low optical loss and a large reversible switching volume, enabling notably enhanced light-matter interactions within the active optical PCM medium. Capitalizing on these favourable attributes, we demonstrated quasi-continuously tuneable active metasurfaces with record half-octave spectral tuning range and large optical contrast of over 400%. We further prototyped a polarization-insensitive phase-gradient metasurface to realize dynamic optical beam steering.

20.
Nat Commun ; 12(1): 1225, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33619270

ABSTRACT

Active metasurfaces, whose optical properties can be modulated post-fabrication, have emerged as an intensively explored field in recent years. The efforts to date, however, still face major performance limitations in tuning range, optical quality, and efficiency, especially for non-mechanical actuation mechanisms. In this paper, we introduce an active metasurface platform combining phase tuning in the full 2π range and diffraction-limited performance using an all-dielectric, low-loss architecture based on optical phase change materials (O-PCMs). We present a generic design principle enabling binary switching of metasurfaces between arbitrary phase profiles and propose a new figure-of-merit (FOM) tailored for reconfigurable meta-optics. We implement the approach to realize a high-performance varifocal metalens operating at 5.2 µm wavelength. The reconfigurable metalens features a record large switching contrast ratio of 29.5 dB. We further validate aberration-free and multi-depth imaging using the metalens, which represents a key experimental demonstration of a non-mechanical tunable metalens with diffraction-limited performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...