Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 670: 86-95, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38759271

ABSTRACT

In this study, a directional loading of cadmium sulfide (CdS) nanoparticles (NPs) was achieved on the opposite edges of nickel metal-organic framework (Ni-MOF) nanosheets (NSs) by adjusting the weight ratio of CdS NPs in the reaction process to produce effective visible light photocatalysts. The close contact between the zero-dimensional (0D) and two-dimensional (2D) regions and the matching positions of the bands promoted charge separation and heterojunction formation. The optimal CdS NPs loading of composite material was 40 wt%. At this ratio, CdS NPs grew primarily at the opposite edges of the Ni-MOF NSs rather than on their surfaces. When lactic acid was used as the sacrificial agent, the hydrogen production rate of the 40 %-CdS/Ni-MOF heterojunction under visible light irradiation was 19.6 mmol h-1 g-1, making a 20-fold enhancement compared to the original CdS NPs sample (1.0 mmol h-1 g-1). The charge carriers generated in CdS NPs were transferred to Ni-MOF NSs through heterojunctions, where Ni-MOF NSs also served as cocatalysts to improve hydrogen production. The combination of the two materials improved the light absorption ability. In particular, the 40 %-CdS/Ni-MOF heterojunction exhibited good photostability, effectively preventing the photocorrosion of CdS NPs. This study introduces an approach for constructing efficient and stable photocatalysts for visible light-driven photocatalytic hydrogen production.

2.
Entropy (Basel) ; 26(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38785627

ABSTRACT

Tree-like structures, characterized by hierarchical relationships and power-law distributions, are prevalent in a multitude of real-world networks, ranging from social networks to citation networks and protein-protein interaction networks. Recently, there has been significant interest in utilizing hyperbolic space to model these structures, owing to its capability to represent them with diminished distortions compared to flat Euclidean space. However, real-world networks often display a blend of flat, tree-like, and circular substructures, resulting in heterophily. To address this diversity of substructures, this study aims to investigate the reconstruction of graph neural networks on the symmetric manifold, which offers a comprehensive geometric space for more effective modeling of tree-like heterophily. To achieve this objective, we propose a graph convolutional neural network operating on the symmetric positive-definite matrix manifold, leveraging Riemannian metrics to facilitate the scheme of information propagation. Extensive experiments conducted on semi-supervised node classification tasks validate the superiority of the proposed approach, demonstrating that it outperforms comparative models based on Euclidean and hyperbolic geometries.

3.
Dev Cell ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38636517

ABSTRACT

During enteric nervous system (ENS) development, pioneering wavefront enteric neural crest cells (ENCCs) initiate gut colonization. However, the molecular mechanisms guiding their specification and niche interaction are not fully understood. We used single-cell RNA sequencing and spatial transcriptomics to map the spatiotemporal dynamics and molecular landscape of wavefront ENCCs in mouse embryos. Our analysis shows a progressive decline in wavefront ENCC potency during migration and identifies transcription factors governing their specification and differentiation. We further delineate key signaling pathways (ephrin-Eph, Wnt-Frizzled, and Sema3a-Nrp1) utilized by wavefront ENCCs to interact with their surrounding cells. Disruptions in these pathways are observed in human Hirschsprung's disease gut tissue, linking them to ENS malformations. Additionally, we observed region-specific and cell-type-specific transcriptional changes in surrounding gut tissues upon wavefront ENCC arrival, suggesting their role in shaping the gut microenvironment. This work offers a roadmap of ENS development, with implications for understanding ENS disorders.

4.
Insect Sci ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38643372

ABSTRACT

The gut microbiome is a key partner of animals, influencing various aspects of their physiology and behaviors. Among the diverse behaviors regulated by the gut microbiome, locomotion is vital for survival and reproduction, although the underlying mechanisms remain unclear. Here, we reveal that the gut microbiome modulates the locomotor behavior of Drosophila larvae via a specific neuronal type in the brain. The crawling speed of germ-free (GF) larvae was significantly reduced compared to the conventionally reared larvae, while feeding and excretion behaviors were unaffected. Recolonization with Acetobacter and Lactobacillus can fully and partially rescue the locomotor defects in GF larvae, respectively, probably due to the highest abundance of Acetobacter as a symbiotic bacterium in the larval gut, followed by Lactobacillus. Moreover, the gut microbiome promoted larval locomotion, not by nutrition, but rather by enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA). Overexpression of Tdc2 rescued locomotion ability in GF larvae. These findings together demonstrate that the gut microbiome specifically modulates larval locomotor behavior through the OA signaling pathway, revealing a new mechanism underlying larval locomotion regulated by the gut microbiome.

5.
J Cell Mol Med ; 28(8): e18290, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588015

ABSTRACT

Growth hormone inducible transmembrane protein (GHITM), one member of Bax inhibitory protein-like family, has been rarely studied, and the clinical importance and biological functions of GHITM in kidney renal clear cell carcinoma (KIRC) still remain unknown. In the present study, we found that GHITM was downregulated in KIRC. Aberrant GHITM downregulation related to clinicopathological feature and unfavourable prognosis of KIRC patients. GHITM overexpression inhibited KIRC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, GHITM overexpression could induce the downregulation of Notch1, which acts as an oncogene in KIRC. Overexpression of Notch1 effectively rescued the inhibitory effect induced by GHITM upregulation. More importantly, GHITM could regulate PD-L1 protein abundance and ectopic overexpression of GHITM enhanced the antitumour efficiency of PD-1 blockade in KIRC, which provided new insights into antitumour therapy. Furthermore, we also showed that YY1 could decrease GHITM level via binding to its promoter. Taken together, our study revealed that GHITM was a promising therapeutic target for KIRC, which could modulate malignant phenotype and sensitivity to PD-1 blockade of renal cancer cells via Notch signalling pathway.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Kidney , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Phenotype , Programmed Cell Death 1 Receptor
6.
Chem Sci ; 15(9): 3262-3272, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38425519

ABSTRACT

The precisely engineered structures of materials greatly influence the manifestation of their properties. For example, in the process of alkali metal ion storage, a carefully designed structure capable of accommodating inserted and extracted ions will improve the stability of material cycling. The present study explores the uniform distribution of self-grown carbon nanotubes to provide structural support for the conductive and elastic MXene layers of Ti3C2Tx-Co@NCNTs. Furthermore, a compatible electrolyte system has been optimized by analyzing the solvation structure and carefully regulating the component in the solid electrolyte interphase (SEI) layer. Mechanistic studies demonstrate that the decomposition predominantly controlled by FSI- leads to the formation of a robust inorganic SEI layer enriched with KF, thus effectively inhibiting irreversible side reactions and major structural deterioration. Confirming our expectations, Ti3C2Tx-Co@NCNTs exhibits an impressive reversible capacity of 260 mA h g-1, even after 2000 cycles at 500 mA g-1 in 1 M KFSI (DME), surpassing most MXene-based anodes reported for PIBs. Additionally, density functional theory (DFT) calculations verify the superior electronic conductivity and lower K+ diffusion energy barriers of the novel superstructure of Ti3C2Tx-Co@NCNTs, thereby affirming the improved electrochemical kinetics. This study presents systematic evaluation methodologies for future research on MXene-based anodes in PIBs.

7.
Chem Commun (Camb) ; 59(89): 13329-13332, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37867331

ABSTRACT

Herein, carbon-coated MoSe2 decorated Mo2CTx MXene heterostructures (MoSe2/Mo2CTx@C) have been fabricated. Mo2CTx works as a dual-function electron/ion conductor, which not only provides high conductivity and mechanical strength, but also prevents the severe self-aggregation of few layered MoSe2 nanosheets. The high reversible capacities of 405 mA h g-1 at 100 mA g-1 after 150 cycles and 258 mA h g-1 at 2000 mA g-1 after 400 cycles could be achieved for a potassium-ion battery.

8.
Technol Cancer Res Treat ; 22: 15330338231167249, 2023.
Article in English | MEDLINE | ID: mdl-37365941

ABSTRACT

OBJECTIVES: DOT1L, a histone methylase, is overexpression in renal cell cancer. However, the role and detailed molecular mechanism of DOT1L involved in renal cancer development remain unknown. METHODS: The inhibition of DOT1L was used by SGC0946 and short hairpin RNA silencing. Monodansylcadaverine staining and transmission electron microscope were performed to detect autophagy changes as a result of the inhibition of DOT1L. MitoTracker Red assay was used to analyze mitochondrial morphology. The autophagy markers and mitochondria-related proteins were analyzed by Western blot, qPCR, or immunofluorescence. ChIP assay was performed to demonstrate H3K79me2 is involved in the direct regulation of Farnesoid X receptor transcription. RESULTS: DOT1L inhibition increased autophagy activity and promoted mito chondria fusion in cell lines of renal cancer. Inhibition of DOT1L upregulated levels of LC3α/ß, P62, MFN1, and MFN2, which contributed to autophagy activity or mitochondria fusion. DOT1L knockdown showed a similar the above process. DOT1L inhibition or silencing resulted in AMP-activated protein kinase activation and mammalian target of rapamycin inhibition. Mechanistically, the DOT1L inhibitor and its short hairpin RNAs decreased the expression of Farnesoid X receptor in a histone methylase-dependent manner. CONCLUSION: We revealed the essential role of Farnesoid X receptor in regulating DOT1L-induced autophagy and mitochondrial fission through the AMP-activated protein kinase/mammalian target of rapamycin pathway in cell lines of renal cancer, which may provide new insights into the pathogenesis of renal cell cancer.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , AMP-Activated Protein Kinases/metabolism , Mitochondrial Dynamics/genetics , Cell Line , Histone Methyltransferases , Kidney Neoplasms/genetics , TOR Serine-Threonine Kinases , Autophagy/genetics , Mitochondria/genetics , Mitochondria/metabolism , Histone-Lysine N-Methyltransferase/genetics
9.
Materials (Basel) ; 16(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37176413

ABSTRACT

CO2, as a cheap and abundant renewable C1 resource, can be used to synthesize high value-added chemicals. In this paper, a series of bifunctional metallic niobium complexes were synthesized and their structures were characterized by IR, NMR and elemental analysis. All of these complexes have been proved to be efficient catalysts for the coupling reaction of CO2 and epoxides to obtain cyclic carbonates under solvent- and co-catalyst-free conditions. By using CO2 and propylene oxide as a model reaction, the optimal reaction conditions were systematically screened as: 100 °C, 1 MPa, 2 h, ratio of catalyst to alkylene oxide 1:100. Under the optimal reaction conditions, the bifunctional niobium catalysts can efficiently catalyze the coupling reaction with high yield and excellent selectivity (maximum yield of >99% at high pressure and 96.8% at atmospheric pressure). Moreover, this series of catalysts can also catalyze the coupling reaction at atmospheric pressure and most of them showed high conversion of epoxide. The catalysts have good substrate suitability and are also applicable to a variety of epoxides including diepoxides and good catalytic performances were achieved for producing the corresponding cyclic carbonates in most cases. Furthermore, the catalysts can be easily recovered by simple filtration and reused for at least five times without obvious loss of catalytic activity and selectivity. Kinetic studies were carried out preliminarily for the bifunctional niobium complexes with different halogen ions (3a(Cl-), 3b(Br-), 3c(I-)) and the formation activation energies (Ea) of cyclic carbonates were obtained. The order of apparent activation energy Ea is 3a (96.2 kJ/mol) > 3b (68.2 kJ/mol) > 3c (37.4 kJ/mol). Finally, a possible reaction mechanism is proposed.

10.
Materials (Basel) ; 16(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36837280

ABSTRACT

A series of bifunctional Schiff base metal catalysts (Zn-NPClR, Zn-NPXH, and M-NPClH) with two quaternary ammonium groups were prepared for carbon dioxide (CO2) and epoxide coupling reactions. The effects of the reaction variables on the catalytic activity were systematically investigated, and the optimal reaction conditions (120 °C, 1 MPa CO2, 3 h) were screened. The performances of different metal-centered catalysts were evaluated, and Co-NPClH showed excellent activity. This kind of bifunctional catalyst has a wide range of substrate applicability, excellent stability, and can be reused for more than five runs. A relatively high TOF could reach up to 1416 h-1 with Zn-NPClH as catalyst by adjusting reaction factors. In addition, the kinetic study of the coupling reaction catalyzed by three catalysts (Zn, Co, and Ni) was carried out to obtain the activation energy (Ea) for the formation of cyclic carbonates. Finally, a possible mechanism for this cyclization reaction was proposed.

11.
Nanomaterials (Basel) ; 13(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36839125

ABSTRACT

Photocatalysts derived from semiconductor heterojunctions for water splitting have bright prospects in solar energy conversion. Here, a Co3O4@ZIS p-n heterojunction was successfully created by developing two-dimensional ZnIn2S4 on ZIF-67-derived hollow Co3O4 nanocages, realizing efficient spatial separation of the electron-hole pair. Moreover, the black hollow structure of Co3O4 considerably increases the range of light absorption and the light utilization efficiency of the heterojunction avoids the agglomeration of ZnIn2S4 nanosheets and further improves the hydrogen generation rate of the material. The obtained Co3O4(20) @ZIS showed excellent photocatalytic H2 activity of 5.38 mmol g-1·h-1 under simulated solar light, which was seven times more than that of pure ZnIn2S4. Therefore, these kinds of constructions of hollow p-n heterojunctions have a positive prospect in solar energy conversion fields.

12.
Am J Cancer Res ; 13(1): 276-292, 2023.
Article in English | MEDLINE | ID: mdl-36777512

ABSTRACT

DOT1L, the only histone H3 lysine 79 methyltransferase, has a prominent effect on promoting the progression of various malignancies, yet the functional contribution of DOT1L to renal cell carcinoma (RCC) progression remains unclear. DOT1L is overexpressed in RCC and linked to poor clinical outcomes. Chemical (SGC0946) or genetic suppression of DOT1L attenuates the growth and invasion of renal cancer cells and results in S-phase arrest. STAT5B expression was suppressed after DOT1L knockdown, and STAT5B overexpression rescued the DOT1L silencing-induced decrease in cell proliferation. DOT1L was found to epigenetically promote the transcription of STAT5B via H3K79me2, and CDK6 acted as a downstream effector of STAT5B to mediate cell cycle arrest. Our study confirmed that DOT1L promotes STAT5B expression in a histone methyltransferase-dependent manner. Downregulation of DOT1L inhibited RCC proliferation and invasion. Thus, targeting DOT1L might be a potential therapeutic intervention for RCC.

13.
PLoS One ; 18(2): e0280573, 2023.
Article in English | MEDLINE | ID: mdl-36827311

ABSTRACT

Posttranslational modification of tubulin increases the dynamic complexity and functional diversity of microtubules. Acetylation of α-tubulin at Lys-40 is a highly conserved posttranslational modification that has been shown to improve the flexibility and resilience of microtubules. Here we studied the in vivo functions of α-tubulin acetylation by knocking-out Atat, the Drosophila α-tubulin acetyltransferase, and by mutating Lys-40 to Arg in α1-tubulin. We found a reduction in the dendritic arborization of larval class I dendritic arborization (da) neurons in both mutants. The dendritic developmental defects in atat mutants could be reversed by enhancing the stability of microtubules either through knocking down the microtubule severing protein Katanin 60 or through overexpressing tubulin-specific chaperone E, suggesting that α-tubulin deacetylation impairsed dendritic morphology by decreasing the stability of microtubules. Using time-lapse recordings, we found that atat and α1-tubulinK40R mutations dramatically increased the number of dendritic protrusions that were likely to be immature dendritic precursors. Finally, we showed that both Atat and α-tubulin acetylation were required in class I da neurons to control larval locomotion. These findings add novel insight into the current knowledge of the role of α-tubulin acetylation in regulating neuronal development and functions.


Subject(s)
Lysine , Tubulin , Animals , Tubulin/metabolism , Lysine/metabolism , Drosophila/metabolism , Acetylation , Larva/metabolism , Microtubules/metabolism , Protein Processing, Post-Translational , Neuronal Plasticity
14.
Mol Biol Rep ; 50(3): 2735-2742, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36575323

ABSTRACT

Renal cell carcinoma accounts for 2-3% of all cancers. It is difficult to diagnose early. Recently, genome-wide studies have identified that histone methylation was one of the functional classes that is most frequently dysregulated in renal cell cancer. Mutation or mis-regulation of histone methylation, methyltransferases, demethylases are associated with gene expression and tumor progression in renal cell cancer. Herein, we summarize histone methylations, demethylases and their alterations and mechanisms in renal cell cancer.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Methylation , Carcinoma, Renal Cell/genetics , Histones/genetics , Histones/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Kidney Neoplasms/genetics
15.
J Colloid Interface Sci ; 630(Pt B): 580-590, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36335777

ABSTRACT

Anion substitution is a valid strategy to modulate the active sites of the transition metal dichalcogenides (TMDs). Herein, a series of cobalt sulfoselenide nanomeshes (CoS2(1-x)Se2x@NC) were synthesized by calcining S/Se power with ultrathin metal-organic framework (MOFs) nanosheets. The vacancy concentration of CoS2(1-x)Se2x@NC could be adjusted through changing the ratio of S/Se precursor. Interestingly, CoS1.25Se0.75@NC electrocatalyst possesses the largest vacancy concentration as well as the optimal electrocatalytic performance. CoS1.25Se0.75@NC delivers an overpotential as low as 134 mV for hydrogen evolution reaction (HER) and 270 mV for oxygen evolution reaction (OER) at the current density of 10 mA cm -2, respectively. Furthermore, CoS1.25Se0.75@NC affords a low cell voltage of 1.67 V (at 10 mA cm-2) and outstanding cycling stability for overall water splitting reaction (more than 55 h). For HER process, theoretical calculations prove that anion vacancy not only lower the free energy barrier of H2O dissociation step but also favor the desorption step of intermediate H*. For OER process, the anion vacancies could modulate the adsorption/desorption free energy of oxygen-containing intermediates. The present work demonstrates a practical approach to modulate the vacancy concentration of cobalt sulfoselenide and provides new ideas for design of efficient non-metal electrocatalysts.

16.
Oxid Med Cell Longev ; 2022: 2353115, 2022.
Article in English | MEDLINE | ID: mdl-36246395

ABSTRACT

Energy stress is an unfavorable condition that tumor cells are often exposed to. Ferroptosis is considered an emerging target for tumor therapy. However, the role of ferroptosis in energy stress in renal cancer is currently unknown. In this study, we found that glucose deprivation significantly enhanced GPX4-dependent ferroptosis through AMPK activation. Further, AMPK activation suppressed GPX4 expression at the transcriptional level through the upregulation of P53 expression. Additionally, the inactivation of JAK2/STAT3 transcriptionally promoted P53 expression, thereby promoting AMPK-mediated GPX4-dependent ferroptosis. In conclusion, energy stress promotes AMPK-mediated GPX4-dependent erastin-induced ferroptosis in renal cancer through the JAK2/STAT3/P53 signaling axis.


Subject(s)
Ferroptosis , Kidney Neoplasms , AMP-Activated Protein Kinases , Glucose , Humans , Janus Kinase 2 , Phospholipid Hydroperoxide Glutathione Peroxidase , STAT3 Transcription Factor , Tumor Suppressor Protein p53
17.
BMC Cancer ; 22(1): 995, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36123627

ABSTRACT

BACKGROUND: Nuclear receptor subfamily 1 group H member 4 (NR1H4) have been reported in various cancer types, however, little is known about the clinical values and biological function in clear cell Renal cell carcinoma (ccRCC). METHODS: The expression pattens of NR1H4 in ccRCC were investigated in clinical specimens, cell lines and publicly­available databases. Cell Counting Kit-8 (CCK-8), colony formation, 5-ethynyl-2' -deoxyuridine (EdU), transwell and cell wound healing assays were performed to assess the biological functions of NR1H4 in 786-O ccRCC cells. Gene set enrichment analysis (GSEA), Flow Cytometry, quantitative real-time PCR (qRT-PCR), western blot and immunofluorescence were performed to explore the molecular mechanism of NR1H4 in ccRCC. We explored the early diagnostic value, prognostic value, genetic mutation and DNA methylation of NR1H4 by a comprehensive bioinformatics analysis based on the data published in the following databases: The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Kaplan-Meier Plotter, Gene Expression Profiling Interactive Analysis (GEPIA), UNIVERSITY OF CALIFORNIA SANTA CRUZ Xena (UCSC Xena), cBio Cancer Genomics Portal, MethSurv, SurvivalMeth and The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN). Its correlation with tumor-infiltrating immune cells in ccRCC was analyzed by Tumor Immune Estimation Resource 2.0 (TIMER2.0) and Tumor Immune System Interactions Database (TISIDB). RESULTS: In this study, NR1H4 was found to be highly expressed in ccRCC tissues and ccRCC cell lines. Knockdown of NR1H4 significantly suppressed cancer cell proliferation, migration and invasion. Mechanistically, tumor-associated signaling pathways were enriched in the NR1H4 overexpression group and si-NR1H4 could induce the downregulation of Cyclin E2 (CCNE2). By bioinformatics analysis, NR1H4 was identified as highly expressed in stage I ccRCC with a high diagnostic accuracy (area under the receiver operating characteristic curve > 0.8). Genetic alteration and DNA methylation of NR1H4 were significantly associated with prognosis in ccRCC patients. Moreover, NR1H4 expression associated with immune cell infiltration levels in ccRCC, which provides a new idea for immunotherapy. CONCLUSIONS: Our study indicated that NR1H4 might be a potential tumor biomarker and therapeutic target for ccRCC which could promote cancer cell proliferation, migration and invasion via regulating CCNE2.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Receptors, Cytoplasmic and Nuclear/metabolism , Biomarkers, Tumor/genetics , Carcinogenesis , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cyclins , Deoxyuridine , Humans , Kidney Neoplasms/pathology
18.
Front Med (Lausanne) ; 9: 942991, 2022.
Article in English | MEDLINE | ID: mdl-36016998

ABSTRACT

Necroptosis is a type of caspase-independent cell death, and it plays a critical role in regulating the development of cancer. To date, little is known about the role of necroptosis-related genes (NRGs) in clear cell renal cell carcinoma (ccRCC). In this study, we downloaded data regarding the expression of NRGs and overall survival (OS) from The Cancer Genome Atlas (TCGA) database and constructed a risk model to determine the prognostic features of necroptosis using COX regression analysis. Patients with ccRCC were divided into low-risk and high-risk groups based on their risk scores. Thereafter, Kaplan-Meier curves were used to evaluate OS, and receiver operating characteristic (ROC) curves were used to determine the accuracy of prediction. Stratified analyses were performed according to different clinical variables. Furthermore, we assessed the correlation between clinical variables and risk scores; the NRGs with differential expression were mainly enriched in positive regulation of intracellular transport and platinum resistance pathways. We constructed prognostic signatures for OS based on four NRGs and showed that the survival time was significantly longer in the low-risk groups than in the high-risk groups (p < 0.001). The area of the ROC curve for OS was 0.717, indicating excellent predictive accuracy of the established model. Therefore, a predictive model based on NRGs was constructed, which can predict the prognosis of patients and provides insights into the biological mechanisms underlying necroptosis in patients with ccRCC.

19.
Front Chem ; 10: 821392, 2022.
Article in English | MEDLINE | ID: mdl-35237558

ABSTRACT

Water-soluble Cu-In-Zn-S quantum dots (CIZS QDs) with orange fluorescence have been synthesized with a glutathione (GSH) as stabilizer via facile a one-step hydrothermal method. The optimal reaction conditions of CIZS QDs including temperature, time, pH, and the molar ratios of precursors were studied. TEM results indicate that the aqueous-dispersible CIZS QDs are quasi-spherical, and the average diameters are 3.76 nm with excellent fluorescent stability. Furthermore, the cytotoxicity of CIZS QDs was investigated by the microcalorimetry combining with TEM and the IC 50 was 10.2 µM . CIZS QDs showed a promising perspective in applications such as a fluorescent probe for bioimaging and biolabeling due to the low cytotoxicity and good biocompatibility. Moreover, the CIZS QDs can distinguish Pb2+ ion from other ions, offering great potentials in lead ion determination in drinking water. According to the results of UV, XRD, FL, PL, and ITC methods, the mechanism of CIZS QDs-Pb2+ assay is due to hydrogen bonding or van der Waals forces in the formation of Pb2+ and CIZS QDs.

20.
J Colloid Interface Sci ; 606(Pt 2): 1882-1889, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34689044

ABSTRACT

Designing high-efficiency heterojunction photocatalysts for water splitting is an intriguing prospect in energy conversion. Herein, we successfully fabricated a CdS/ZIF-8 heterojunction system through a facile wet-chemically method, in which ZIF-8 nanoparticles were in-situ adhered on hollow CdS nanotubes. Due to the well-matched band structure and intimate interface contact in CdS/ZIF-8 hybrid structure, the interfacial charge separation in the established system was tremendously boosted. As a consequence, the established CdS/ZIF-8 heterojunction exhibited the optimal photocatalytic hydrogen production performance (2.10 mmol·g-1 L-1), which was 35 times higher than pristine CdS (0.06 mmol·g-1·L-1). We believe this strategy will endow new insights for the development of novel photocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...