Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(28): 20199-20209, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38919279

ABSTRACT

Heterogeneous solvent-metal-free aerobic oxidation of alcohols under ambient conditions is interesting but remains a significant challenge. Herein, a series of porous TEMPO-functionalized poly(ionic liquid)s (TEMPO-PILs) featuring a pure polycationic framework were successfully developed through the free radical polymerization of the ionic liquid 3-(2-chloroacetic acid-2,2,6,6-tetramethyl-1-oxo-4-piperidyl)-1-vinylimidazolium chloride and bis-vinylimidazolium bromide salt. Characterizations revealed that the obtained TEMPO-PILs possessed a high TEMPO density, abundant bromide ions, and a tunable porous structure, which enabled them to serve as solvent-free heterogeneous organocatalysts for the metal-free aerobic oxidation of benzyl alcohol under ambient conditions, exhibiting high catalytic activity and stable recyclability. A high yield of 99% coupled with a turnover frequency (TOF) of 13.3 h-1 was obtainable, which is higher than most of the reported TEMPO-based heterogeneous catalysts, even superior to homogeneous TEMPO-functionalized ionic liquids. Furthermore, a broad range of alcohols were effectively converted into their corresponding ketones and aldehydes. A possible reaction mechanism is proposed for understanding the catalytic oxidation behavior, indicative of the synergistic effect of TEMPO moieties and bromide ions.

2.
Inorg Chem ; 63(20): 9098-9108, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38718177

ABSTRACT

Two remarkable aluminum borophosphates (AlBPOs), namely, Na3[Al2B6P4O22(OH)3](H2O)6 (denoted as ABPO1) and Na3[Al2BP2O11](H2O)0.5 (denoted as ABPO2), have been designed and prepared by low-temperature flux syntheses. The exceptional open framework structure of ABPO1 is formed by a unique microanionic network [Al2B6P4O22(OH)3]n3-, which contains three types of 8-, 12-, and 16-membered ring (MR) tunnels. Interestingly, these tunnels are featured by a type of super-nanocage as large as ∼1.753 nm × 1.753 nm × 1.753 nm, which is the first example of AlBPOs containing extra-large cages. Importantly, it was found that Na+ can be partially exchanged by K+, Sr2+, Cd2+, and Ni2+, which means that it is a potential ionic exchanger for removing radionuclides and toxic cations. The structure of ABPO2 features a unique 2D anionic AlBPO layer composed of corner-sharing AlO6 octahedra and AlO4, BO4, and PO4 tetrahedra. To the best of our knowledge, this is the first example of both AlO6 octahedra and AlO4 tetrahedra being contained in the structure. 9-MRs can be observed along the b-axis. Herein, the syntheses and topological structures of ABPO1 and ABPO2 as well as elemental analysis, thermal stability, infrared spectroscopy, UV-vis diffuse reflectance, structural properties, and ionic exchange properties are also discussed.

3.
Langmuir ; 40(21): 10980-10991, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739526

ABSTRACT

Functionalized hexagonal boron nitride nanosheets (BNNSs) have arisen as compelling anticorrosive additives, yet the precise mechanism of their corrosion resistance enhancement in coatings remains unclear. Here, polyethylenimine functionalized BNNSs (PEI-BNNSs) with approximately 6-11 layers were prepared through a "one-step" method. Then, the PEI-BNNSs/Waterborne epoxy (WEP) composite coatings were incorporated via the waterborne latex blending method for the anticorrosion of the Q235 substrate. The impedance modulus (|Z|f = 0.01 Hz) of 0.5 wt % PEI-BNNSs/WEP composite coating soaked in 3.5 wt % NaCl solution for 35 days increased by 4 orders of magnitude compared to pure WEP coating, exhibiting exceptional long-term resistance against corrosion. The positron annihilation lifetime spectroscopy and corrosion product analysis demonstrated that the reinforced anticorrosion capabilities are not solely ascribed to the "tortuous path effect" arising from BNNSs impermeability. These mechanisms also encompass the reduction in free volume fraction and radius of the free volume cavities within the composite coating brought about by the PEI molecules. Additionally, the increase in coating adhesion, promoted by PEI, plays an important role in augmenting the barrier properties against corrosive agents. This study provided a full comprehension of the role played by functionalized BNNSs in fortifying the anticorrosion attributes of WEP coatings.

4.
Chemistry ; 30(27): e202400261, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38433578

ABSTRACT

90Sr, as a typical artificial radionuclide, poses a serious threat to human health and the ecological environment. The selective removal of this radionuclide from industrial nuclear waste is crucial for our environment. Here we report a novel potassium fluoroaluminate, K2[(AlF5)H2O], which was synthesized by a simple low-temperature one-step method. It adopts a 1D AlF6-chain structure, which consists of exchangeable potassium ions in between the infinite chains of octahedral Al centers. As a remarkable inorganic ionic exchanger, K2[(AlF5)H2O] has a high chemical stability (resistance of pH=~3-12) and thermal stability (≥~300 °C). It possesses an excellent adsorption selectivity (Kd=~6.1×104 mL ⋅ g-1) and a maximum adsorption capacity of qm=~120.32 mg ⋅ g-1 for Sr2+. Importantly, it still keep a very good selectivity for Sr2+ ions even in the presence of competing Na+, Mg2+ and Ca2+ aqueous solutions. K2[(AlF5)H2O] is the first example of fluoroaluminate ionic exchange materials that can capture Sr2+. This result opens up a new way to design and synthesize inorganic ionic exchangers for the selective removal of Sr2+ ions from radioactive waste water.

5.
J Colloid Interface Sci ; 662: 748-759, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38377694

ABSTRACT

The increase of reaction temperature of electrocatalysts and the construction of heterogeneous structures is regarded as an efficient method to improve the electrocatalytic water splitting activity. Here, we report an approach to enhance the local heat and active sites of the catalyst by building a heterostructure with Co9S8 to significantly improve its electrocatalytic performance. The as-fabricated Co9S8@Ce-NiCo LDH/NF electrode possesses a notable photothermal ability, as it effectively converts near-infrared (NIR) light into the local heat, owing to its significant optical absorption. Leveraging these favorable qualities, the prepared Co9S8@Ce-NiCo LDH/NF electrode showed impressive performance in both hydrogen evolution reaction (HER) (η100 = 144 mV) and oxygen evolution reaction (OER) (η100 = 229 mV) under NIR light. Compared to the absence of the NIR light, the presence of NIR irradiation leads to a 24.6 % increase in catalytic efficiency for HER and a 15.8 % increase for OER. Additionally, other dual-functional electrocatalysts like NiCo-P, NiFeMo, and NiFe(OH)x also demonstrated significantly enhanced photothermal effects and improved catalytic performance owing to the augmented photothermal conversion when combined with Co9S8. This work offers novel pathways for the development of photothermal-electrocatalytic systems that facilitate economically efficient and energy-conserving overall water splitting processes.

6.
Molecules ; 28(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37836824

ABSTRACT

The ternary composite MgO@ZnO@BC was synthesized and characterized for the adsorption of Cu2+, Pb2+ heavy metal ions from wastewater. The results show that the addition of the MgO@ZnO@BC composite results in higher adsorption properties for Cu2+ and Pb2+, with a molar ratio of 5% 0.1 g, and maximum adsorption capacity (50.63 mg/g for Cu2+ and 61.46 mg/g for Pb2+). The Langmuir adsorption isotherm of the adsorption complex and the kinetics of adsorption are secondary kinetics. The adsorption of Cu2+ and Pb2+ was mainly chemisorption, accompanied by physical adsorption. This adsorption method fully conforms to the concepts of clean production and efficient waste utilization, providing a reference for the removal of heavy metal ions from wastewater and waste recycling using ternary composite materials.

7.
Nanomaterials (Basel) ; 13(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37049287

ABSTRACT

The environmental problems in the world are attracting increasing amounts of attention, and heavy metal pollution in the water has become one of the focuses of the ecological environment. Molybdenum disulfide (MoS2) has excellent adsorption performance because of its extremely high specific surface area and unique active site structure, which has attracted an increasing amount of attention in the field of heavy metal disposal in various types of water. In this paper, two sorts of MoS2 nanoparticles, spherical and lamellar, were synthesized by different chemical methods. Their morphology and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and a Raman spectrometer. The adsorption properties of two sorts of MoS2 nanoparticles for copper (Ⅱ) ions in water were investigated by changing the pH value, adsorption time, initial concentration of solution, adsorption temperature, etc. Finally, the adsorption mechanism was analyzed by kinetic, isothermal, and thermodynamic models. The results show that two microstructures of MoS2 nanoparticles can be used as efficient adsorption materials for removing heavy metal ions from water, although there are differences in adsorption capacity between them, which expands the theoretical basis of heavy metal adsorption in a water environment.

8.
RSC Adv ; 13(13): 9010-9019, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36950074

ABSTRACT

The durability of supported metal catalysts usually suffers from sintering, the metal nanoparticles aggregating into larger sizes and subsequent loss of reactive surface, resulting in catalysts deactivation when heated at elevated temperatures. Herein, we investigate the evolution of Au species on different morphologies of γ-Al2O3 and surprisingly found vastly different behavior for the dispersion of surface Au nanoparticles. A nanorod-shaped γ-Al2O3 is prepared by the hydrothermal method resulting in an extraordinary catalyst support that can stabilize Au nanoparticles at annealing temperatures up to 700 °C. In contrast, the Au-supported catalyst prepared using commercial γ-Al2O3 shows a greater degree of inactivation under the same conditions. Remarkably, the unique morphology of such nanorod-shaped γ-Al2O3 is beneficial in preventing Au nanoparticles from sintering. The γ-Al2O3 nanorods are more effective than the commercial γ-Al2O3 at anchoring the Au nanoparticles. The results of X-ray photoelectron spectroscopy (XPS), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and H2-TPR, reveal the interfacial interactions between Au nanoparticles and γ-Al2O3 nanorods, yielding a sinter-stability of the obtained Au/γ-Al2O3 nanorods catalyst. This synthetic strategy is simple and amenable to the large-scale manufacture of thermally stable γ-Al2O3 for industrial applications. Here, we investigate the morphology-dependent behavior of Au nanoparticles dispersed on different morphologies of γ-Al2O3. The result of X-ray photoelectron spectroscopy (XPS), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and H2-TPR, reveal the interfacial interactions between Au nanoparticles and gamma alumina nanorods. Au nanoparticles on γ-Al2O3 nanorods exhibit higher sinter-resistant performance than those on commercial γ-Al2O3.

9.
Front Chem ; 11: 1152113, 2023.
Article in English | MEDLINE | ID: mdl-36970412

ABSTRACT

The study of phase formation in the U-Te-O systems with mono and divalent cations under high-temperature high-pressure (HT/HP) conditions has resulted in four new inorganic compounds: K2 [(UO2) (Te2O7)], Mg [(UO2) (TeO3)2], Sr [(UO2) (TeO3)2] and Sr [(UO2) (TeO5)]. Tellurium occurs as TeIV, TeV, and TeVI in these phases which demonstrate the high chemical flexibility of the system. Uranium VI) adopts a variety of coordinations, namely, UO6 in K2 [(UO2) (Te2O7), UO7 in Mg [(UO2) (TeO3)2] and Sr [(UO2) (TeO3)2], and UO8 in Sr [(UO2) (TeO5)]. The structure of K2 [(UO2) (Te2O7)] is featured with one dimensional (1D) [Te2O7]4- chains along the c-axis. The Te2O7 chains are further linked by UO6 polyhedra, forming the 3D [(UO2) (Te2O7)]2- anionic frameworks. In Mg [(UO2) (TeO3)2], TeO4 disphenoids share common corners with each other resulting in infinite 1D chains of [(TeO3)2]4- propagating along the a-axis. These chains link the uranyl bipyramids by edge sharing along two edges of the disphenoids, resulting in the 2D layered structure of [(UO2) (Te2O6)]2-. The structure of Sr [(UO2) (TeO3)2] is based on 1D chains of [(UO2) (TeO3)2]∞ 2- propagating into the c-axis. These chains are formed by edge-sharing uranyl bipyramids which are additionally fused together by two TeO4 disphenoids, which also share two edges. The 3D framework structure of Sr [(UO2) (TeO5)] is composed of 1D [TeO5]4- chains sharing edges with UO7 bipyramids. Three tunnels based on 6-Membered rings (MRs) are propagating along [001] [010] and [100] directions. The HT/HP synthetic conditions for the preparation of single crystalline samples and their structural aspects are discussed in this work.

10.
Nanomaterials (Basel) ; 11(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34443954

ABSTRACT

Graphene has been widely used as a lubricating additive to reduce the energy consumption of engines and improve fuel economy because of its unique crystal structure. Herein, graphene (GR) and fluorinated graphene (F-GR) nanoparticles were prepared by ball milling and liquid-phase exfoliation. The SEM/EDS, HRTEM, XPS, Raman spectrometer, X-ray spectrometer, FTIR were used to investigate the morphologies, surface groups, and crystal structure of two kinds of graphene materials. The influence of loads on the tribological properties of two kinds of particles was investigated in Poly Alpha Olefin (PAO6) using a UMT-2 reciprocating tribometer. Results showed that the crystal structure of GR is better than F-GR. F-GR can improve the lubrication performance of PAO6. For PAO6 containing 1 wt% F-GR at 10 N, the average friction coefficient and average wear rate decreased by 12.3% and 87% relative to pure PAO6, respectively. However, the high load resulted in an inconspicuous anti-wear and anti-friction effect. The influence of F-GR on the tribological behavior of PAO6 was more substantial than that of GR. The friction and wear mechanisms attributed to F-GR quickly entered the interface between the friction pairs. Friction-induced F-GR nanosheets mainly took the tribo-chemical reactions to participate in the lubrication film formation and helped achieve a low friction coefficient and wear rate.

11.
ChemistryOpen ; 8(3): 333-338, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30976473

ABSTRACT

The use of metal complex immobilized/decorated porous materials as catalysts has found various applications. As such, finding a new and mild method for synthesis of metal complex immobilized over porous material is of great interest. Immobilized porous materials for styrene oxidation were reported in this work. Immobilized porous material of Cu-Schiff base complex @MIL-101 were described, in which immobilized Cu-Schiff base complex within super cage of a metal-organic framework (MOF)-based porous material, chromium (III) terephthalate MIL-101. They were systematically characterized by using elemental analysis, powder X-ray diffraction, fourier transform infrared spectroscopy, N2 absorption-desorption, and so on, also used as catalyst for the selective oxidation of styrene to benzaldehyde. Comparatively, the immobilized heterogeneous catalyst of Cu-Schiff base complex@MIL-101 acted as an efficient heterostructure catalyst in the oxidation of styrene to benzaldehyde up to six cycles, and showed superior activity for styrene oxidation over MIL-101.

12.
Nanomaterials (Basel) ; 8(2)2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29373531

ABSTRACT

High-performance poly(1,4-butylene terephthalate) (PBT) nanocomposites have been developed via the consideration of phosphorus-containing agents and amino-carbon nanotube (A-CNT). One-pot functionalization method has been adopted to prepare functionalized CNTs via the reaction between A-CNT and different oxidation state phosphorus-containing agents, including chlorodiphenylphosphine (DPP-Cl), diphenylphosphinic chloride (DPP(O)-Cl), and diphenyl phosphoryl chloride (DPP(O3)-Cl). These functionalized CNTs, DPP(Ox)-A-CNTs (x = 0, 1, 3), were, respectively, mixed with PBT to obtain the CNT-based polymer nanocomposites through a melt blending method. Scanning electron microscope observations demonstrated that DPP(Ox)-A-CNT nanoadditives were homogeneously distributed within PBT matrix compared to A-CNT. The incorporation of DPP(Ox)-A-CNT improved the thermal stability of PBT. Moreover, PBT/DPP(O3)-A-CNT showed the highest crystallization temperature and tensile strength, due to the superior dispersion and interfacial interactions between DPP(O3)-A-CNT and PBT. PBT/DPP(O)-A-CNT exhibited the best flame retardancy resulting from the excellent carbonization effect. The radicals generated from decomposed polymer were effectively trapped by DPP(O)-A-CNT, leading to the reduction of heat release rate, smoke production rate, carbon dioxide and carbon monoxide release during cone calorimeter tests.

SELECTION OF CITATIONS
SEARCH DETAIL
...