Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(15): 23801-23812, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475222

ABSTRACT

Mixed pitch gratings are developed for the optical addressing of trapped 88Sr+ ion by means of simulation and experimental measurement approaches. Meanwhile, Python-based data analysis techniques were developed to analyze simulated and measured beam profiles. A fixed pitch grating with a pitch of 1.2 µm was used as a reference, and a mixed pitch grating with pitches of 1.1/1.2 µm of various ratios are investigated. The Python-based data analysis codes demonstrates highly automated capability in processing both simulated and measured beam profile data to compute key parameters, including beam waist and Gaussian fitting. Mixed pitch grating delivers light beam with smaller beam waist (17.4 µm) compared to the fixed pitch grating (26.4 µm), exhibiting ∼34% beam waist reduction.

2.
Light Sci Appl ; 12(1): 145, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308488

ABSTRACT

One of the most exciting breakthroughs in physics is the concept of topology that was recently introduced to photonics, achieving robust functionalities, as manifested in the recently demonstrated topological lasers. However, so far almost all attention was focused on lasing from topological edge states. Bulk bands that reflect the topological bulk-edge correspondence have been largely missed. Here, we demonstrate an electrically pumped topological bulk quantum cascade laser (QCL) operating in the terahertz (THz) frequency range. In addition to the band-inversion induced in-plane reflection due to topological nontrivial cavity surrounded by a trivial domain, we further illustrate the band edges of such topological bulk lasers are recognized as the bound states in the continuum (BICs) due to their nonradiative characteristics and robust topological polarization charges in the momentum space. Therefore, the lasing modes show both in-plane and out-of-plane tight confinements in a compact laser cavity (lateral size ~3λlaser). Experimentally, we realize a miniaturized THz QCL that shows single-mode lasing with a side-mode suppression ratio (SMSR) around 20 dB. We also observe a cylindrical vector beam for the far-field emission, which is evidence for topological bulk BIC lasers. Our demonstration on miniaturization of single-mode beam-engineered THz lasers is promising for many applications including imaging, sensing, and communications.

3.
Micromachines (Basel) ; 14(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36838122

ABSTRACT

This work presents a novel bird-shaped broadband piezoelectric energy harvester based on a two-DOF crossed beam for low-frequency environmental vibrations. The harvester features a cantilever mounted on a double-hinged beam, whose rotating motions effectively diminish its natural frequencies. Numerical simulation based on the finite element method is conducted to analyze the modal shapes and the harmonic response of the proposed harvester. Prototypes are fabricated and experiments are carried out by a testing system, whose results indicate a good agreement with the simulation. The multi-frequency energy harvesting is achieved at the first-, second-, and fifth-order resonances. In particular, the proposed harvester demonstrates the remarkable output characteristics of 9.53 mW and 1.83 mW at frequencies as low as 19.23 HZ and 45.38 Hz, which are superior to the majority of existing energy harvesters. Besides, the influences of key parameters on the harvesting performance are experimentally investigated to optimize the environmental adaptability of the harvester. This work provides a new perspective for efficiently harvesting the low-frequency vibration energy, which can be utilized for supplying power to electronic devices.

4.
Nanoscale ; 15(10): 4843-4851, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36805597

ABSTRACT

Black-Si (b-Si) providing broadband light antireflection has become a versatile substrate for photodetectors, photo-electric catalysis, sensors, and photovoltaic devices. However, the conventional fabrication methods suffer from single morphology, low yield, or frangibility. In this work, we present a high-yield CMOS-compatible technique to produce 6-inch wafer-scale b-Si with diverse random nanostructures. b-Si is achieved by O2/SF6 plasma-based reactive ion etching (RIE) of the Si wafer which is coated with a GeSn layer. A stable grid of the SnOxFy layer, formed during the initial GeSn etching, acts as a self-assembled hard mask for the formation of subwavelength Si nanostructures. b-Si wafers with diverse surface morphologies, such as the nanopore, nanocone, nanohole, nanohillock, and nanowire were achieved. Furthermore, the responsivity of the b-Si metal-semiconductor-metal (MSM) photodetector in the near-infrared (NIR) wavelength range (1000-1200 nm) is 40-200% higher than that of a planar-Si MSM photodetector with the same level of dark current, which is beneficial for applications in photon detectors, solar cells, and photocatalysis. This work not only demonstrates a new non-lithography method to fabricate wafer-scale b-Si wafers, but may also provide a novel strategy to fabricate other nanostructured surface materials (e.g., Ge or III-V based compounds) with morphology engineering.

5.
Nanomicro Lett ; 15(1): 35, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36629933

ABSTRACT

We conceptualize bioresource upgrade for sustainable energy, environment, and biomedicine with a focus on circular economy, sustainability, and carbon neutrality using high availability and low utilization biomass (HALUB). We acme energy-efficient technologies for sustainable energy and material recovery and applications. The technologies of thermochemical conversion (TC), biochemical conversion (BC), electrochemical conversion (EC), and photochemical conversion (PTC) are summarized for HALUB. Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg-1 and total benefit of 749 $/ton biomass via TC. Specific surface area of biochar reached 3000 m2 g-1 via pyrolytic carbonization of waste bean dregs. Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%. Besides, lignocellulosic biomass can contribute to a current density of 672 mA m-2 via EC. Bioresource can be 100% selectively synthesized via electrocatalysis through EC and PTC. Machine learning, techno-economic analysis, and life cycle analysis are essential to various upgrading approaches of HALUB. Sustainable biomaterials, sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis, microfluidic and micro/nanomotors beyond are also highlighted. New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.

6.
Biosensors (Basel) ; 12(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36140099

ABSTRACT

This paper presents the development of a compact, three-electrode electrochemical device functionalized by a biocompatible layer of hyaluronic acid methacrylate (HAMA) hydrogel for the adsorptive removal of detrimental lead (Pb(II)) ions in aqueous solutions. An adsorption mechanism pertaining to the observed analytical performance of the device is proposed and further experimentally corroborated. It is demonstrated that both the molecular interactions originating from the HAMA hydrogel and electrochemical accumulation originating from the electrode beneath contribute to the adsorption capability of the device. Infrared spectral analysis reveals that the molecular interaction is mainly induced by the amide functional group of the HAMA hydrogel, which is capable of forming the Pb(II)-amide complex. In addition, inductively coupled plasma mass spectrometric (ICP-MS) analysis indicates that the electrochemical accumulation is particularly valuable in facilitating the adsorption rate of the device by maintaining a high ion-concentration gradient between the solution and the hydrogel layer. ICP-MS measurements show that 94.08% of Pb(II) ions present in the test solution can be adsorbed by the device within 30 min. The HAMA hydrogel-modified electrochemical devices exhibit reproducible performance in the aspect of Pb(II) removal from tap water, with a relative standard deviation (RSD) of 1.28% (for n = 8). The experimental results suggest that the HAMA hydrogel-modified electrochemical device can potentially be used for the rapid, on-field remediation of Pb(II) contamination.


Subject(s)
Hyaluronic Acid , Water Pollutants, Chemical , Adsorption , Amides , Hydrogels , Hydrogen-Ion Concentration , Ions , Kinetics , Lead , Methacrylates , Solutions , Water/chemistry , Water Pollutants, Chemical/chemistry
7.
Micromachines (Basel) ; 12(1)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477456

ABSTRACT

Carbon nanotubes (CNTs) have, over the years, been used in research as a promising material in electronics as a thermal interface material and as interconnects amongst other applications. However, there exist several issues preventing the widespread integration of CNTs onto device applications, e.g., high growth temperature and interfacial resistance. To overcome these issues, a complementary metal oxide semiconductor (CMOS)-compatible CNT array transfer method that electrically connects the CNT arrays to target device substrates was developed. The method separates the CNT growth and preparation steps from the target substrate. Utilizing an alignment tool with the capabilities of thermocompression enables a highly accurate transfer of CNT arrays onto designated areas with desired patterns. With this transfer process as a starting point, improvement pointers are also discussed in this paper to further improve the quality of the transferred CNTs.

8.
Nanotechnology ; 29(1): 015202, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29083996

ABSTRACT

Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO2-wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO2-wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO2-wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V µm-1 to achieve FE current density of 22 mA cm-2; whereas SiO2-wrapped field emitter requires 8.5 V µm-1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO2, as obtained from the electric field simulation. Nevertheless, SiO2-wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO2-wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO2-wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.

9.
Nanotechnology ; 29(7): 075205, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29239308

ABSTRACT

It has been widely reported that carbon nanotubes (CNTs) exhibit superior field emission (FE) properties due to their high aspect ratios and unique structural properties. Among the various types of CNTs, random growth CNTs exhibit promising FE properties due to their reduced inter-tube screening effect. However, growing random growth CNTs on individual catalyst islands often results in spread out CNT bundles, which reduces overall field enhancement. In this study, significant improvement in FE properties in CNT bundles is demonstrated by confining them in microfabricated SiO2 pits. Growing CNT bundles in narrow (0.5 µm diameter and 2 µm height) SiO2 pits achieves FE current density of 1-1.4 A cm-2, which is much higher than for freestanding CNT bundles (76.9 mA cm-2). From the Fowler Nordheim plots, confined CNT bundles show a higher field enhancement factor. This improvement can be attributed to the reduced bundle diameter by SiO2 pit confinement, which yields bundles with higher aspect ratios. Combining the obtained outcomes, it can be conclusively summarized that confining CNTs in SiO2 pits yields higher FE current density due to the higher field enhancement of confined CNTs.

10.
Sensors (Basel) ; 17(10)2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29039765

ABSTRACT

Diffraction gratings are among the most commonly used optical elements in applications ranging from spectroscopy and metrology to lasers. Numerous methods have been adopted for the fabrication of gratings, including microelectromechanical system (MEMS) fabrication which is by now mature and presents opportunities for tunable gratings through inclusion of an actuation mechanism. We have designed, modeled, fabricated and tested a silicon based pitch tunable diffraction grating (PTG) with relatively large resolving power that could be deployed in a spaceborne imaging spectrometer, for example in a picosatellite. We have carried out a detailed analytical modeling of PTG, based on a mass spring system. The device has an effective fill factor of 52% and resolving power of 84. Tuning provided by electrostatic actuation results in a displacement of 2.7 µ m at 40 V . Further, we have carried out vibration testing of the fabricated structure to evaluate its feasibility for spaceborne instruments.

SELECTION OF CITATIONS
SEARCH DETAIL
...