Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202407481, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840295

ABSTRACT

The design of heterojunctions that mimic natural photosynthetic systems holds great promise for enhancing photoelectric response. However, the limited interfacial space charge layer (SCL) often fails to provide sufficient driving force for the directional migration of inner charge carriers. Drawing inspiration from the electron transport chain (ETC) in natural photosynthesis system, we developed a novel anisotropic dual S-scheme heterojunction artificial photosynthetic system composed of Bi2O3-BiOBr-AgI for the first time, with Bi2O3 and AgI selectively distributed along the bicrystal facets of BiOBr. Compared to traditional semiconductors, the anisotropic carrier migration in BiOBr overcomes the recombination resulting from thermodynamic diffusion, thereby establishing a potential ETC for the directional migration of inner charge carriers. Importantly, this pioneering bioinspired design overcomes the limitations imposed by the limited distribution of SCL in heterojunctions, resulting in a remarkable 55-fold enhancement in photoelectric performance. Leveraging the etching of thiols on Ag-based materials, this dual S-scheme heterojunction is further employed in the construction of photoelectrochemical sensors for the detection of acetylcholinesterase and organophosphorus pesticides.

2.
Nano Lett ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843442

ABSTRACT

Increasing threats of air pollution prompt the design of air purification systems. As a promising initiative defense strategy, nanocatalysts are integrated to catalyze the detoxification of specific pollutants. However, it remains a grand challenge to tailor versatile nanocatalysts to cope with diverse pollutants in practice. Here, we report a nanozyme metabolism system to realize broad-spectrum protection from air pollution. Atomic K-modified carbon nitride featuring flavin oxidase-like and peroxidase-like activities was synthesized to initiate nanozyme metabolism. In situ experiments and theoretical investigations collectively show that K sites optimize the geometric and electronic structure of cyano sites for both enzyme-like activities. As a proof of concept, the nanozyme metabolism was applied to the mask against volatile organic compounds, persistent organic pollutants, reactive oxygen species, bacteria, and so on. Our finding provides a thought to tackle global air pollution and deepens the understanding of nanozyme metabolism.

3.
Anal Chim Acta ; 1308: 342664, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740454

ABSTRACT

Nanozymes is a kind of nanomaterials with enzyme catalytic properties. Compared with natural enzymes, nanozymes merge the advantages of both nanomaterials and natural enzymes, which is highly important in applications such as biosensing, clinical diagnosis, and food inspection. In this study, we prepared ß-MnOOH hexagonal nanoflakes with a high oxygen vacancy ratio by utilizing SeO2 as a sacrificial agent. The defect-rich MnOOH hexagonal nanoflakes demonstrated excellent oxidase-like activity, catalyzing the oxidation substrate in the presence of O2, thereby rapidly triggering a color reaction. Consequently, a colorimetric sensing platform was constructed to assess the total antioxidant capacity in commercial beverages. The strategy of introducing defects in situ holds great significance for the synthesis of a series of high-performance metal oxide nanozymes, driving the development of faster and more efficient biosensing and analysis methods.


Subject(s)
Antioxidants , Manganese Compounds , Oxides , Oxides/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/analysis , Manganese Compounds/chemistry , Colorimetry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Oxidation-Reduction , Nanostructures/chemistry , Catalysis
5.
Talanta ; 275: 126112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677169

ABSTRACT

The development of nanomaterials with multi-enzyme-like activity is crucial for addressing challenges in multi-enzyme-based biosensing systems, including cross-talk between different enzymes and the complexities and costs associated with detection. In this study, Pt nanoparticles (Pt NPs) were successfully supported on a Zr-based metal-organic framework (MOF-808) to create a composite catalyst named MOF-808/Pt NPs. This composite catalyst effectively mimics the functions of acetylcholinesterase (AChE) and peroxidase (POD). Leveraging this capability, we replaced AChE and POD with MOF-808/Pt NPs and constructed a biosensor for sensitive detection of acetylcholine (ACh). The MOF-808/Pt NPs catalyze the hydrolysis of ACh, resulting in the production of acetic acid. The subsequent reduction in pH value further enhances the POD-like activity of the MOFs, enabling signal amplification through the oxidation of a colorimetric substrate. This biosensor capitalizes on pH variations during the reaction to modulate the different enzyme-like activities of the MOFs, simplifying the detection process and eliminating cross-talk between different enzymes. The developed biosensor holds great promise for clinical diagnostic analysis and offers significant application value in the field.


Subject(s)
Acetylcholine , Acetylcholinesterase , Biosensing Techniques , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Biosensing Techniques/methods , Acetylcholine/analysis , Acetylcholine/metabolism , Acetylcholine/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Platinum/chemistry , Metal Nanoparticles/chemistry , Hydrogen-Ion Concentration , Zirconium/chemistry , Biomimetic Materials/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Colorimetry/methods , Catalysis , Limit of Detection
6.
Sci Bull (Beijing) ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38679503

ABSTRACT

The anodic oxygen evolution reaction is a well-acknowledged side reaction in traditional aqueous electrochemiluminescence (ECL) systems due to the generation and surface aggregation of oxygen at the electrode, which detrimentally impacts the stability and efficiency of ECL emission. However, the effect of reactive oxygen species generated during water oxidation on ECL luminophores has been largely overlooked. Taking the typical luminol emitter as an example, herein, we employed NiIr single-atom alloy aerogels possessing efficient water oxidation activity as a prototype co-reaction accelerator to elucidate the relationship between ECL behavior and water oxidation reaction kinetics for the first time. By regulating the concentration of hydroxide ions in the electrolyte, the electrochemical oxidation processes of both luminol and water are finely tuned. When the concentration of hydroxide ions in electrolyte is low, the kinetics of water oxidation is attenuated, which limits the generation of oxygen, effectively mitigates the influence of oxygen accumulation on the ECL strength, and offers a novel perspective for harnessing side reactions in ECL systems. Finally, a sensitive and stable sensor for antioxidant detection was constructed and applied to the practical sample detection.

7.
J Am Chem Soc ; 146(17): 12197-12205, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629507

ABSTRACT

The development of potential-resolved electrochemiluminescence (ECL) systems with dual emitting signals holds great promise for accurate and reliable determination in complex samples. However, the practical application of such systems is hindered by the inevitable mutual interaction and mismatch between different luminophores or coreactants. In this work, for the first time, by precisely tuning the oxygen reduction performance of M-N-C single-atom catalysts (SACs), we present a dual potential-resolved luminol ECL system employing endogenous dissolved O2 as a coreactant. Using advanced in situ monitoring and theoretical calculations, we elucidate the intricate mechanism involving the selective and efficient activation of dissolved O2 through central metal species modulation. This modulation leads to the controlled generation of hydroxyl radical (·OH) and superoxide radical (O2·-), which subsequently trigger cathodic and anodic luminol ECL emission, respectively. The well-designed Cu-N-C SACs, with their moderate oxophilicity, enable the simultaneous generation of ·OH and O2·-, thereby facilitating dual potential-resolved ECL. As a proof of concept, we employed the principal component analysis statistical method to differentiate antibiotics based on the output of the dual-potential ECL signals. This work establishes a new avenue for constructing a potential-resolved ECL platform based on a single luminophore and coreactant through precise regulation of active intermediates.

8.
Anal Chem ; 96(12): 5022-5028, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38470563

ABSTRACT

For conventional potential-resolved ratiometric electrochemiluminescence (ECL) systems, the introduction of multiplex coreactants is imperative. However, the undesirable interactions between different coreactants inevitably affect analytical accuracy and sensitivity. Herein, through the coordination of aggregation-induced emission ligands with gadolinium cations, the self-luminescent metal-organic framework (Gd-MOF) is prepared and serves as a novel coreactant-free anodic ECL emitter. By the intercalation of [Ru(bpy)2dppz]2+ with light switch effect into DNA duplex, one high-efficiency cathodic ECL probe is obtained using K2S2O8 as a coreactant. In the presence of acetamiprid, the strong affinity between the target and its aptamer induces the release of [Ru(bpy)2dppz]2+, resulting in a decreasing cathode signal and an increasing anode signal owing to the ECL resonance energy transfer from Gd-MOF to [Ru(bpy)2dppz]2+. In this way, an efficient dual-signal ECL aptasensor is constructed for the ratiometric analysis of acetamiprid, exhibiting a remarkably low detection limit of 0.033 pM. Strikingly, by using only one exogenous coreactant, the cross interference from multiple coreactants can be eliminated, thus improving the detection accuracy. The developed high-performance ECL sensing platform is successfully applied to monitor the residual level of acetamiprid in real samples, demonstrating its potential application in the field of food security.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Neonicotinoids , Luminescent Measurements/methods , Biosensing Techniques/methods , Photometry , Electrochemical Techniques/methods
9.
Anal Chem ; 96(5): 2100-2106, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38262931

ABSTRACT

Improving the sensitivity in electrochemiluminescence (ECL) detection systems necessitates the integration of robust ECL luminophores and efficient signal transduction. In this study, we report a novel ECL nanoprobe (Zr-MOF) that exhibits strong and stable emission by incorporating aggregation-induced emission ligands into Zr-based metal-organic frameworks (MOFs). Meanwhile, we designed a high-performance signal modulator through the implementation of a well-designed controlled release system with a self-on/off function. ZnS quantum dots (QDs) encapsulated within the cavities of aminated mesoporous silica nanoparticles (NH2-SiO2) serve as the ECL quenchers, while adenosine triphosphate (ATP) aptamers adsorbed on the surface of NH2-SiO2 through electrostatic interaction act as "gatekeepers." Based on the target-triggered ECL resonance energy transfer between Zr-MOF and ZnS QDs, we establish a coreactant-free ECL aptasensor for the sensitive detection of ATP, achieving an impressive low detection limit of 0.033 nM. This study not only demonstrates the successful combination of ECL with controlled release strategies but also opens new avenues for developing highly efficient MOFs-based ECL systems.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Silicon Dioxide , Adenosine Triphosphate , Delayed-Action Preparations , Luminescent Measurements , Electrochemical Techniques
10.
Angew Chem Int Ed Engl ; 63(11): e202319108, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38196079

ABSTRACT

Engineering isolated metal sites resembling the primary coordination sphere of metallocofactors enables atomically dispersed materials as promising nanozymes. However, most existing nanozymes primarily focus on replicating specific metallocofactors while neglecting other supporting cofactors within active pockets, leading to reduced electron transfer (ET) efficiency and thus inferior catalytic performances. Herein, we report a metal-organic framework UiO-67 nanozyme with atomically dispersed iron sites, which involves multiple tailored enzyme-like nanocofactors that synergistically drive the ET process for enhanced peroxidase-like catalysis. Among them, the linker-coupled atomic iron site plays a critical role in substrate activation, while bare linkers and zirconia nodes facilitate the ET efficiency of intermediates. The synergy of three nanocofactors results in a 4.29-fold enhancement compared with the single effort of isolated metal site-based nanocofactor, holding promise in immunoassay for sensitive detection of chlorpyrifos. This finding opens a new way for designing high-performance nanozymes by harmonizing various nanocofactors at the atomic and molecular scale.


Subject(s)
Oxidoreductases , Peroxidase , Peroxidases , Iron/chemistry , Catalysis
11.
Nat Commun ; 14(1): 6064, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770453

ABSTRACT

Neurotoxicity of organophosphate compounds (OPs) can catastrophically cause nervous system injury by inhibiting acetylcholinesterase (AChE) expression. Although artificial systems have been developed for indirect neuroprotection, they are limited to dissociating P-O bonds for eliminating OPs. However, these systems have failed to overcome the deactivation of AChE. Herein, we report our finding that Al3+ is engineered onto the nodes of metal-organic framework to synthesize MOF-808-Al with enhanced Lewis acidity. The resultant MOF-808-Al efficiently mimics the catalytic behavior of AChE and has a self-defense ability to break the activity inhibition by OPs. Mechanism investigations elucidate that Al3+ Lewis acid sites with a strong polarization effect unite the highly electronegative -OH groups to form the enzyme-like catalytic center, resulting in superior substrate activation and nucleophilic attack ability with a 2.7-fold activity improvement. The multifunctional MOF-808-Al, which has satisfactory biosafety, is efficient in reducing neurotoxic effects and preventing neuronal tissue damage.


Subject(s)
Acetylcholinesterase , Biomimetics , Acetylcholinesterase/chemistry , Neuroprotection , Organophosphates
12.
ACS Sens ; 8(8): 3257-3263, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37566793

ABSTRACT

Semiconductor-based photoelectrochemical (PEC) biosensors have garnered significant attention in the field of disease diagnosis and treatment. However, the recognition units of these biosensors are mainly limited to bioactive macromolecules, which hinder the photoelectric response due to their insulating characteristics. In this study, we develop an in situ-sensitized strategy that utilizes a small-molecule probe at the interface of the photoelectrode to accurately detect α-glucosidase (α-Glu) activity. Silane, a prototype small-molecule probe, was surface-modified on graphitic carbon nitride to generate Si nanoparticles upon reacting with hydroquinone, the enzymatic product of α-Glu. The in situ formed heterojunction enhances the light-harvesting property and photoexcited carrier separation efficiency. As a result, the in situ-sensitized PEC biosensor demonstrates excellent accuracy, a low detection limit, and outstanding anti-interference ability, showing good applicability in evaluating α-Glu activity and its inhibitors in human serum samples. This novel in situ sensitization approach using small-molecule probes opens up new avenues for developing simple and efficient PEC biosensing platforms by replacing conventional biorecognition elements.


Subject(s)
Biosensing Techniques , alpha-Glucosidases , Humans , Electrochemical Techniques , Semiconductors
13.
Anal Chem ; 95(28): 10762-10768, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37421333

ABSTRACT

The tris(bipyridine)ruthenium(II) (Ru(bpy)32+)-tripropylamine anodic electrochemiluminescence (ECL) system has been widely applied in commercial bioanalysis. However, the presence of amine compounds in the biological environment results in unavoidable anodic interference signals, which hinder further extensive use of the system. In contrast, the cathodic Ru(bpy)32+ ECL system can overcome these limitations. The Ru(bpy)32+/peroxydisulfate (S2O82-, PDS) ECL system has been extensively employed due to its ability to produce a sulfate radical anion (SO4•-) with strong oxidation ability, which enhances the ECL signal. However, the symmetrical molecular structure of PDS makes it challenging to be activated and causes low luminescence efficiency. To address this issue, we propose an efficient Ru(bpy)32+-based ternary ECL system that uses the iron-nitrogen-carbon single-atom catalyst (Fe-N-C SAC) as an advanced accelerator. Fe-N-C SAC can efficiently activate PDS into reactive oxygen species at a lower voltage, which significantly boosts the cathodic ECL emission of Ru(bpy)32+. Benefiting from the outstanding catalytic activity of Fe-N-C SAC, we successfully established an ECL biosensor that detects alkaline phosphatase activity with high sensitivity, demonstrating the feasibility of practical application.

14.
Chem Sci ; 14(26): 7346-7354, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37416724

ABSTRACT

Advances in the rational design of semiconductor-electrocatalyst photoelectrodes provide robust driving forces for improving energy conversion and quantitative analysis, while a deep understanding of elementary processes remains underwhelming due to the multistage interfaces involved in semiconductor/electrocatalyst/electrolyte. To address this bottleneck, we have constructed carbon-supported nickel single atoms (Ni SA@C) as an original electron transport layer with catalytic sites of Ni-N4 and Ni-N2O2. This approach illustrates the combined effect of photogenerated electron extraction and the surface electron escape ability of the electrocatalyst layer in the photocathode system. Theoretical and experimental studies reveal that Ni-N4@C, with excellent oxygen reduction reaction catalytic activity, is more beneficial for alleviating surface charge accumulation and facilitating electrode-electrolyte interfacial electron-injection efficiency under a similar built-in electric field. This instructive method enables us to engineer the microenvironment of the charge transport layer for steering the interfacial charge extract and reaction kinetics, providing a great prospect for atomic scale materials to enhance photoelectrochemical performance.

15.
Adv Healthc Mater ; 12(27): e2301073, 2023 10.
Article in English | MEDLINE | ID: mdl-37285868

ABSTRACT

Developing functional nanomaterials for nonenzymatic glucose electrochemical sensing platforms is vital and challenging from the perspective of pathology and physiology. Accurate identification of active sites and thorough investigation of catalytic mechanisms are critical prerequisites for the design of advanced catalysts for electrochemical sensing. Herein, Cu aerogels are synthesized as a model system for sensitive nonenzymatic glucose sensing. The resultant Cu aerogels exhibit good catalytic activity for glucose electrooxidation with high sensitivity and a low detection limit. Significantly, in situ electrochemical investigations and Raman characterizations reveal the catalytic mechanism of Cu-based nonenzymatic glucose sensing. During the electrocatalytic oxidation of glucose, Cu(I) is electrochemically oxidized to generate Cu(II), and the resultant Cu(II) is spontaneously reduced back to Cu(I) by glucose, achieving the sustained Cu(I)/Cu(II) redox cycles. This study provides profound insights into the catalytic mechanism for nonenzymatic glucose sensing, which provides great potential guidance for a rational design of advanced catalysts in the future.


Subject(s)
Biosensing Techniques , Copper , Copper/chemistry , Electrochemical Techniques , Electrodes , Glucose/chemistry , Oxidation-Reduction
16.
Small ; 19(40): e2302929, 2023 10.
Article in English | MEDLINE | ID: mdl-37282757

ABSTRACT

Various applications lead to the requirement of nanozymes with either specific activity or multiple enzyme-like activities. To this end, intelligent nanozymes with freely switching specificity abilities hold great promise to adapt to complicated and changeable practical conditions. Herein, a nitrogen-doped carbon-supported copper single-atom nanozyme (named Cu SA/NC) with switchable specificity is reported. Atomically dispersed active sites endow Cu SA/NC with specific peroxidase-like activity at room temperature. Furthermore, the intrinsic photothermal conversion ability of Cu SA/NC enables the specificity switch by additional laser irradiation, where photothermal-induced temperature elevation triggers the expression of oxidase-like and catalase-like activity of Cu SA/NC. For further applications in practice, a pretreatment-and-sensing integration kit (PSIK) is constructed, where Cu SA/NC can successively achieve sample pretreatment and sensitive detection by switching from multi-activity mode to specific-activity mode. This study sets the foundation for nanozymes with switchable specificity and broadens the application scope in point-of-care testing.


Subject(s)
Carbon , Copper , Copper/chemistry , Carbon/chemistry , Nitrogen/chemistry
17.
Nano Lett ; 23(11): 5358-5366, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37265420

ABSTRACT

Accelerating the migration of interfacial carriers in a heterojunction is of paramount importance for driving high-performance photoelectric responses. However, the inferior contact area and large resistance at the interface limit the eventual photoelectric performance. Herein, we fabricated an S-scheme heterojunction involving a 2D/2D dual-metalloporphyrin metal-organic framework with metal-center-regulated CuTCPP(Cu)/CuTCPP(Fe) through electrostatic self-assembly. The ultrathin nanosheet-like architectures reduce the carrier migration distance, while the similar porphyrin backbones promote reasonable interface matching through π-π conjugation, thereby inhibiting the recombination of photogenerated carriers. Furthermore, the metal-center-regulated S-scheme band alignments create a giant built-in electric field, which provides a huge driving force for efficient carrier separation and migration. Coupling with the biomimetic catalytic activity of CuTCPP(Fe), the resultant heterojunction was utilized to construct photoelectrochemical uric acid biosensors. This work provides a general strategy to enhance photoelectric responses by engineering the interfacial structure of heterojunctions.

18.
Angew Chem Int Ed Engl ; 62(33): e202308257, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37365673

ABSTRACT

Robust electrochemiluminescence (ECL) of carbon nitride (CN) requires efficient electron-hole recombination and the suppression of electrode passivation. In this work, Au nanoparticles and single atoms (AuSA+NP ) loaded on CN serve as dual active sites that significantly accelerate charge transfer and activate peroxydisulfate. Meanwhile, the well-established Schottky junctions between Au NPs and CN act as electron sinks, effectively trapping over-injected electrons to prevent electrode passivation. As a result, the porous CN modified with AuSA+NP exhibits an enhanced and stable ECL emission, with a minimal relative standard deviation of 0.24 %. Furthermore, the designed ECL biosensor based on AuSA+NP -CN shows a remarkable performance in detecting organophosphorus pesticides. This innovative strategy has the potential to offer new insights into strong and stable ECL emission for practical applications.

19.
Anal Chem ; 95(26): 10044-10051, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37337310

ABSTRACT

Photoelectrochemical (PEC) enzymatic biosensors have attracted widespread attention for their specificity and sensitivity, but the charge migration between an enzyme and a semiconductor remains uncertain. In this work, horseradish peroxidase (HRP) was successfully immobilized on ionic liquid-functioned Cu@Cu2O (IL-Cu@Cu2O) aerogels to boost charge transfer and an interfacial redox reaction. The photogenerated electrons flow from the conduction band of Cu2O to HRP under the assistance of Cu and are subsequently captured by [Fe(CN)6]3- in the electrolyte, which boosts the PEC response. The improved interfacial catalytic ability after the immobilization of HRP is proved by the enhanced redox ability under light irradiation. Benefiting from the excellent PEC activity and catalysis reaction of IL-Cu@Cu2O@HRP, an immunoassay platform was constructed for sensing prostate-specific antigens, which presents a wide detection range and a low limit of detection. An in-depth understanding of the direct electronic communication between a photoactive material and an enzyme for boosted charge transfer and interfacial catalysis provides a new view for the design of advanced PEC sensing platforms.


Subject(s)
Biosensing Techniques , Copper , Horseradish Peroxidase , Electrons , Electron Transport , Metals , Immunoassay , Limit of Detection , Electrochemical Techniques
20.
Proc Natl Acad Sci U S A ; 120(21): e2220315120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186847

ABSTRACT

The unsatisfactory catalytic activity of nanozymes owing to their inefficient electron transfer (ET) is the major challenge in biomimetic catalysis-related biomedical applications. Inspired by the photoelectron transfers in natural photoenzymes, we herein report a photonanozyme of single-atom Ru anchored on metal-organic frameworks (UiO-67-Ru) for achieving photoenhanced peroxidase (POD)-like activity. We demonstrate that the atomically dispersed Ru sites can realize high photoelectric conversion efficiency, superior POD-like activity (7.0-fold photoactivity enhancement relative to that of UiO-67), and good catalytic specificity. Both in situ experiments and theoretical calculations reveal that photoelectrons follow the cofactor-mediated ET process of enzymes to promote the production of active intermediates and the release of products, demonstrating more favorable thermodynamics and kinetics in H2O2 reduction. Taking advantage of the unique interaction of the Zr-O-P bond, we establish a UiO-67-Ru-based immunoassay platform for the photoenhanced detection of organophosphorus pesticides.


Subject(s)
Hydrogen Peroxide , Pesticides , Biomimetics , Organophosphorus Compounds , Oxidation-Reduction , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...