Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Clin Lab Sci ; 53(4): 578-586, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37625833

ABSTRACT

OBJECTIVE: Sepsis, a life-threatening organ dysfunction, is among the leading causes of mortality in intensive care units. Sepsis occurrence is associated with macrophage pyroptosis, and microRNAs (miRNAs) have emerged as key factors in this process. However, the specific role of miR-122-3p in pyroptosis during sepsis progression and its underlying mechanisms remain to be fully elucidated. METHODS: We established an in vitro sepsis model using lipopolysaccharide (LPS)-activated macrophages, followed by transfection of a miR-122-3p mimic into RAW264.7 macrophages. We subsequently determined the effects of miR-122-3p on cell viability and pyroptosis using cell viability, western blot, and qPCR assays. The binding affinity between miR-122-3p and NLR pyrin domain containing 1 (NLRP1) mRNA was then confirmed using a dual-luciferase reporter assay. Finally, the secretion of pro-inflammatory cytokines (interleukin (IL)-2, IL-6, and tumor necrosis factor-α (TNF-α) was determined using ELISA. RESULTS: The results revealed that LPS treatment lead to a significant increase in the production of pro-inflammatory cytokines including IL-2, IL-6, and TNF-α in RAW264.7 cells. We observed that overexpression of miR-122-3p effectively restored cell viability and attenuated the expression of key inflammatory markers promoted by LPS, such as caspase-1, pro-caspase-1, IL-18, IL-1ß, NLRP3, apoptosis-associated speck-like protein containing CARD, and cleaved- gasdermin-D. Our data indicate that miR-122-3p is capable of directly bounding to NLRP1 and inhibiting its expression. CONCLUSIONS: These results confirmed that miR-122-3p plays a crucial role in the inhibition of sepsis by suppressing macrophage pyroptosis in an NLRP1-dependent manner. Therefore, miR-122-3p presents as a promising therapeutic target for sepsis.


Subject(s)
MicroRNAs , Pyroptosis , Humans , Caspase 1 , Cytokines , Interleukin-6 , Lipopolysaccharides/pharmacology , Macrophages , MicroRNAs/genetics , NLR Proteins/genetics , Tumor Necrosis Factor-alpha
2.
Sci Total Environ ; 760: 143356, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33158528

ABSTRACT

6:2 fluorotelomer sulfonic acid (6:2 FTSA) is a novel perfluorooctane sulfonate (PFOS) alternative used globally in aqueous film forming foams (AFFFs). Although 6:2 FTSA has been recently detected in the environment, its fate in terrestrial invertebrates remains unclear. The uptake, elimination and biotransformation of 6:2 FTSA in earthworms (Eisenia fetida) were investigated after in vivo and in vitro exposure. 6:2 FTSA could be biodegraded by microorganisms in soil to trifluoroacetic acid (TFA), perfluoropropionic acid (PFPrA), perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA) and perfluorohexanoic acid (PFHxA). The uptake rate constant (ku) and biota-to-soil accumulation factor (BSAF) of 6:2 FTSA in earthworms were 0.185 goc/gww/d and 0.685 goc/gww, respectively, indicating high bioaccumulative ability in earthworms. Five terminal perfluorocarboxylic acids (PFCAs) metabolites, including TFA, PFPrA, PFBA, PFPeA and PFHxA were observed in both in vivo and in vitro exposure tests, with TFA as the predominant metabolite. However, no perfluoroheptanoic acid (PFHpA) was observed in the present study. The elimination rate constants (ke) increased in the order: 6:2 FTSA (0.057/d) < TFA (0.058/d) < PFPrA (0.071/d) < PFBA (0.084/d) < PFHxA (0.182/d) < PFPeA (0.193/d). Biodegradation of 6:2 FTSA in the earthworm homogenates, cytolchrome P450 (CYP450) enzyme solutions and glutathione-s-transferase (GST) enzyme solutions fitted well with the first order kinetics. The biotransformation rate constants (k) were in the following order: homogenates (0.012/h) > CYP450 (0.009/h) > GST (0.007/h), implying that CYP450 and GST were involved in biotransformation of 6:2 FTSA in earthworms. This study provides important theoretical evidence for the fate of 6:2 FTSA in earthworms.


Subject(s)
Fluorocarbons , Oligochaeta , Animals , Biodegradation, Environmental , Biotransformation , Fluorocarbons/analysis , Soil , Sulfonic Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...