Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
CNS Neurosci Ther ; 30(2): e14389, 2024 02.
Article in English | MEDLINE | ID: mdl-37545429

ABSTRACT

AIM: The nocebo effect, such as nausea and vomiting, is one of the major reasons patients discontinue therapy. The underlying mechanisms remain unknown due to a lack of reliable experimental models. The goal of this study was to develop a new animal model of nocebo-related nausea by combining observational learning and Pavlovian conditioning paradigms. METHODS: Male Sprague-Dawley rats with nitroglycerin-induced migraine were given 0.9% saline (a placebo) or LiCl (a nausea inducer) following headache relief, according to different paradigms. RESULTS: Both strategies provoked nocebo nausea responses, with the conditioning paradigm having a greater induction impact. The superposition of two mechanisms led to a further increase in nausea responses. A preliminary investigation of the underlying mechanism revealed clearly raised peripheral and central cholecystokinin (CCK) levels, as well as specific changes in the 5-hydroxytryptamine and cannabinoid systems. Brain networks related to emotion, cognition, and visceral sense expressed higher c-Fos-positive neurons, including the anterior cingulate cortex (ACC), insula, basolateral amygdala (BLA), thalamic paraventricular nucleus (PVT), hypothalamic paraventricular nucleus (PVN), nucleus tractus solitarius (NTS), periaqueductal gray (PAG), and dorsal raphe nucleus-dorsal part (DRD). We also found that nausea expectances in the model could last for at least 12 days. CONCLUSION: The present study provides a useful experimental model of nocebo nausea that might be used to develop potential molecular pathways and therapeutic strategies for nocebo.


Subject(s)
Nocebo Effect , Solitary Nucleus , Humans , Rats , Male , Animals , Rats, Sprague-Dawley , Solitary Nucleus/metabolism , Cholecystokinin/metabolism , Cholecystokinin/pharmacology , Nausea/chemically induced , Nausea/metabolism , Proto-Oncogene Proteins c-fos/metabolism
2.
Neuroscience ; 528: 64-74, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37516436

ABSTRACT

The glymphatic system is important for waste removal in the central nervous system. It removes soluble proteins and metabolic waste under the action of aquaporin-4 (AQP4) at the end of astrocytes. The glymphatic system plays a role in numerous neurological diseases; however, the relationship between migraine and the glymphatic system remains unclear. In this study, we explored the relationship between the glymphatic system and migraine using the nitroglycerin migraine model in C57/BL6mice. The glymphatic influx of cerebrospinal fluid tracer was reduced in mice in the migraine model, accompanied by decreased expression and impaired polarization of AQP4, thereby suggesting glymphatic dysfunction in migraine mice model. Then, further suppression of glymphatic function by TGN-020 (an AQP4 blocker) aggravated the migraine pathological changes in mice. The results indicated that glymphatic dysfunction may aggravate migraine pathology. Therefore, our findings revealed the potential role of the glymphatic system in migraine, providing possible targets for migraine prevention and treatment.


Subject(s)
Glymphatic System , Migraine Disorders , Nervous System Diseases , Mice , Animals , Brain/metabolism , Glymphatic System/metabolism , Migraine Disorders/metabolism , Nervous System Diseases/metabolism , Astrocytes/metabolism , Disease Models, Animal , Aquaporin 4/metabolism
3.
J Headache Pain ; 24(1): 65, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37271805

ABSTRACT

Migraine is the second highest cause of disability worldwide, bringing a huge socioeconomic burden. Improving mitochondrial function has promise as an effective treatment strategy for migraine. Szeto-Schiller peptide (SS-31) is a new mitochondria-targeted tetrapeptide molecule that has been shown to suppress the progression of diseases by restoring mitochondrial function, including renal disease, cardiac disease, and neurodegenerative disease. However, whether SS-31 has a therapeutic effect on migraine remains unclear. The aim of this study is to clarify the treatment of SS-31 for headache and its potential mechanisms. Here we used a mouse model induced by repeated dural infusion of inflammatory soup (IS), and examined roles of Sirt3/Pgc-1α positive feedback loop in headache pathogenesis and mitochondrial function. Our results showed that repeated IS infusion impaired mitochondrial function, mitochondrial ultrastructure and mitochondrial homeostasis in the trigeminal nucleus caudalis (TNC). These IS-induced damages in TNC were reversed by SS-31. In addition, IS-induced nociceptive responses were simultaneously alleviated. The effects of SS-31 on mitochondrial function and mitochondrial homeostasis (mainly mitochondrial biogenesis) were attenuated partially by the inhibitor of Sirt3/Pgc-1α. Overexpression of Sirt3/Pgc-1α increased the protein level of each other. These results indicated that SS-31 alleviated nociceptive responses and restored mitochondrial function in an IS-induced headache mouse model via Sirt3/Pgc-1α positive feedback loop. SS-31 has the potential to be an effective drug candidate for headache treatment.


Subject(s)
Migraine Disorders , Neurodegenerative Diseases , Sirtuin 3 , Mice , Animals , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Feedback , Neurodegenerative Diseases/metabolism , Nociception , Mitochondria/metabolism , Disease Models, Animal , Headache/metabolism , Migraine Disorders/metabolism
4.
Front Neurol ; 14: 1115318, 2023.
Article in English | MEDLINE | ID: mdl-37090989

ABSTRACT

Background: Targeting metabolic pathways has emerged as a new migraine treatment strategy as researchers realize the critical role metabolism plays in migraine. Activated inflammatory cells undergo metabolic reprogramming and rely on glycolysis to function. The objective of this study was to investigate the glycolysis changes in the experimental model of migraine and the effect of glycolysis inhibitor 2-Deoxy-D-glucose (2-DG) in the pathophysiology of migraine. Methods: We used a rat model of migraine that triggered migraine attacks by applying inflammatory soup (IS) to the dura and examined changes in glycolysis. 2-DG was used to inhibit glycolysis, and the effects of 2-DG on mechanical ectopic pain, microglial cell activation, calcitonin gene-related peptides (CGRP), c-Fos, and inflammatory factors induced by inflammatory soup were observed. LPS stimulated BV2 cells to establish a model in vitro to observe the effects of 2-DG on brain-derived neurotrophic factor (BDNF) after microglia activation. Results: In the experimental model of migraine, key enzymes involved in glycolysis such as phosphofructokinase platelet (PFKP), hexokinase (HK2), hypoxia inducible factor-1α (HIF-1α), lactate dehydrogenase (LDH) and pyruvate kinase (PKM2) were expressed in the medullary dorsal horn. While the expression of electronic respiratory transport chain complex IV (COXIV) decreased. There were no significant changes in glucose 6-phosphate dehydrogenase (G6PD), a key enzyme in the pentose phosphate pathway. The glycolysis inhibitor 2-DG alleviated migraine-like symptoms in an experimental model of migraine, reduced the release of proinflammatory cytokines caused by microglia activation, and decreased the expression of CGRP and c-Fos. Further experiments in vitro demonstrated that glycolysis inhibition can reduce the release of Iba-1/proBDNF/BDNF and inhibit the activation of microglia. Conclusion: The migraine rat model showed enhanced glycolysis. This study suggests that glycolytic inhibitor 2-DG is an effective strategy for alleviating migraine-like symptoms. Glycolysis inhibition may be a new target for migraine treatment.

5.
Neurology ; 100(21): e2141-e2154, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37015823

ABSTRACT

BACKGROUND AND OBJECTIVES: Based on the Global Burden of Diseases, Injuries, and Risk Factors (GBD) study, neurologic disorders are a major cause of morbidity and mortality worldwide. However, there has been no comprehensive assessment of neurologic disorders in Asia. Data from the GBD 1990-2019 study were investigated to provide new details for neurologic disorders in Asia. METHODS: The burden of common neurologic disorders in Asia was calculated for 1990 and 2019 as incidence, prevalence, deaths, and disability-adjusted life-years (DALYs). Thirteen common neurologic disorders were analyzed. Data are presented as totals and by sex, age, year, location, risk factors, and sociodemographic index (SDI) and shown as counts and rates. RESULTS: In 2019, the most burdensome neurologic disorders in Asia for the absolute number of DALYs were stroke (98.8 million, 95% uncertainty interval [UI] 91.0-107.0), migraine (24.6 million, 95% UI 3.4-56.4), and Alzheimer disease (AD) and other dementias (13.5 million, 95% UI 5.9-29.8). From 1990 to 2019, the absolute number of DALYs and deaths caused by combined neurologic disorders (deaths by 60.7% and DALYs by 17.6%) increased, but the age-standardized rates (deaths by 34.1% and DALYs by 36.3%) decreased. The burden of neurologic disorders peaked among individuals aged 65-74 years and was higher among male than among female individuals; moreover, this burden varied considerably across Asian subregions and countries. Risk-attributable DALYs accounted for 86.9%, 28.5%, and 11.1% of DALYs for stroke, AD and other dementias, and multiple sclerosis, respectively. SDI was associated with both stroke and communicable neurological disorders. In terms of crude rate, the higher the SDI value, the higher the prevalence of stroke, and the lower all metrics of communicable neurological disorders. DISCUSSION: Neurologic disorders were the leading cause of DALYs and the second leading cause of deaths in Asia in 2019, and the burden may likely increase with the growth and aging of the Asian population. Urgent measures are needed for prevention, treatment, rehabilitation, and support services for common neurologic disorders regionally and nationally.


Subject(s)
Alzheimer Disease , Nervous System Diseases , Stroke , Humans , Male , Female , Global Burden of Disease , Quality-Adjusted Life Years , Risk Factors , Nervous System Diseases/epidemiology , Prevalence , Global Health
6.
Brain Sci ; 13(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36831874

ABSTRACT

Previous clinical and basic studies have shown that migraine is associated with cognitive impairment, anxiety, and depression. It severely affects the quality of life. In this study, C57BL/6 mice were randomly divided into four groups: IS group, IS+M group, and IS+S group with repeated application of dural inflammatory soup (IS) stimulation to establish a migraine model, followed by PBS, memantine, and sumatriptan interventions, respectively; the blank control group underwent the same treatment procedure but with PBS instead of IS and intervention drugs. The cognitive function of the mice was used as the main outcome indicator. After application of the IS, mice showed reduced pain threshold for mechanical stimulation, decreased learning memory capacity, attention deficit, a reduced number of dendritic spines in hippocampal neurons, and altered synaptic ultrastructure. The cognitive function indexes of mice in the IS+M group recovered with changes in Arc protein expression to a level not statistically different from that of the Control group, while the IS and IS+S groups remained at lower levels. The present results suggest that Arc-mediated synaptic plasticity may be an essential mechanism of cognitive dysfunction in migraine.

7.
J Headache Pain ; 23(1): 75, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35780081

ABSTRACT

Migraine is the second most common form of headache disorder and the second leading cause of disability worldwide. Cognitive symptoms ranked second resulting in migraine-related disability, after pain. P2X7 receptor (P2X7R) was recently shown to be involved in hyperalgesia in migraine. However, the role of P2X7R in migraine-related cognitive impairment is still ill-defined. The aim of this study was to explore the molecular mechanisms underlying migraine-related cognitive impairment and the role of P2X7R in it. Here we used a well-established mouse model of migraine that triggered migraine attacks by application of inflammatory soup (IS) to the dura. Our results showed that repeated dural IS stimulation triggered upregulation of P2X7R, activation of NLRP3 inflammasome, release of proinflammatory cytokines (IL-1ß and IL-18) and activation of pyroptotic cell death pathway. Gliosis (microgliosis and astrogliosis), neuronal loss and cognitive impairment also occurred in the IS-induced migraine model. No significant apoptosis or whiter matter damage was observed following IS-induced migraine attacks. These pathological changes occurred mainly in the cerebral cortex and to a less extent in the hippocampus, all of which can be prevented by pretreatment with a specific P2X7R antagonist Brilliant Blue G (BBG). Moreover, BBG can alleviate cognitive impairment following dural IS stimulation. These results identified P2X7R as a key contributor to migraine-related cognitive impairment and may represent a potential therapeutic target for mitigating cognitive impairment in migraine.


Subject(s)
Cognitive Dysfunction , Migraine Disorders , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, Purinergic P2X7 , Animals , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Disease Models, Animal , Mice , Migraine Disorders/complications , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/metabolism , Pyroptosis/genetics , Pyroptosis/physiology , Receptors, Purinergic P2X7/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...