Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gastroenterology ; 162(3): 877-889.e7, 2022 03.
Article in English | MEDLINE | ID: mdl-34861219

ABSTRACT

BACKGROUND & AIMS: Excessive shedding of apoptotic enterocytes into the intestinal lumen is observed in inflammatory bowel disease and is correlated with disease relapse. Based on their cytolytic capacity and surveillance behavior, we investigated whether intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) are actively involved in the shedding of enterocytes into the lumen. METHODS: Intravital microscopy was performed on GFP γδ T cell reporter mice treated with intraperitoneal lipopolysaccharide (10 mg/kg) for 90 minutes to induce tumor necrosis factor-mediated apoptosis. Cell shedding in various knockout or transgenic mice in the presence or absence of blocking antibody was quantified by immunostaining for ZO-1 funnels and cleaved caspase-3 (CC3). Granzyme A and granzyme B release from ex vivo-stimulated γδ IELs was quantified by enzyme-linked immunosorbent assay. Immunostaining for γδ T cell receptor and CC3 was performed on duodenal and ileal biopsies from controls and patients with Crohn's disease. RESULTS: Intravital microscopy of lipopolysaccharide-treated mice revealed that γδ IELs make extended contact with shedding enterocytes. These prolonged interactions require CD103 engagement by E-cadherin, and CD103 knockout or blockade significantly reduced lipopolysaccharide-induced shedding. Furthermore, we found that granzymes A and B, but not perforin, are required for cell shedding. These extracellular granzymes are released by γδ IELs both constitutively and after CD103/E-cadherin ligation. Moreover, we found that the frequency of γδ IEL localization to CC3-positive enterocytes is increased in Crohn's disease biopsies compared with healthy controls. CONCLUSIONS: Our results uncover a previously unrecognized role for γδ IELs in facilitating tumor necrosis factor-mediated shedding of apoptotic enterocytes via CD103-mediated extracellular granzyme release.


Subject(s)
Antigens, CD/metabolism , Crohn Disease/metabolism , Enterocytes/physiology , Granzymes/metabolism , Integrin alpha Chains/metabolism , Intraepithelial Lymphocytes/physiology , Adolescent , Adult , Animals , Antigens, CD/genetics , Apoptosis , Cadherins/metabolism , Caspase 3/metabolism , Crohn Disease/pathology , Duodenum/pathology , Enterocytes/metabolism , Female , Gene Knockdown Techniques , Humans , Ileum/pathology , Integrin alpha Chains/genetics , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intraepithelial Lymphocytes/enzymology , Intraepithelial Lymphocytes/pathology , Intravital Microscopy , Jejunum/immunology , Jejunum/pathology , Lipopolysaccharides , Male , Mice , Mice, Knockout , Middle Aged , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Young Adult
2.
J Immunol ; 201(2): 747-756, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29884699

ABSTRACT

Intraepithelial lymphocytes (IELs) expressing the γδ TCR (γδ IELs) provide continuous surveillance of the intestinal epithelium. However, the mechanisms regulating the basal motility of these cells within the epithelial compartment have not been well defined. We investigated whether IL-15 contributes to γδ IEL localization and migratory behavior in addition to its role in IEL differentiation and survival. Using advanced live cell imaging techniques in mice, we find that compartmentalized overexpression of IL-15 in the lamina propria shifts the distribution of γδ T cells from the epithelial compartment to the lamina propria. This mislocalization could be rescued by epithelial IL-15 overexpression, indicating that epithelial IL-15 is essential for γδ IEL migration into the epithelium. Furthermore, in vitro analyses demonstrated that exogenous IL-15 stimulates γδ IEL migration into cultured epithelial monolayers, and inhibition of IL-2Rß significantly attenuates the basal motility of these cells. Intravital microscopy showed that impaired IL-2Rß signaling induced γδ IEL idling within the lateral intercellular space, which resulted in increased early pathogen invasion. Similarly, the redistribution of γδ T cells to the lamina propria due to local IL-15 overproduction also enhanced bacterial translocation. These findings thus reveal a novel role for IL-15 in mediating γδ T cell localization within the intestinal mucosa and regulating γδ IEL motility and patrolling behavior as a critical component of host defense.


Subject(s)
Interleukin-15/metabolism , Intestinal Mucosa/immunology , Intraepithelial Lymphocytes/physiology , T-Lymphocytes/immunology , Animals , Cell Differentiation , Cell Movement , Cell Survival , Cells, Cultured , Humans , Immunologic Surveillance , Immunomodulation , Interleukin-15/genetics , Interleukin-2 Receptor beta Subunit/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Signal Transduction
3.
Curr Pathobiol Rep ; 6(1): 35-46, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29755893

ABSTRACT

PURPOSE OF REVIEW: This review will explore the contribution of IELs to mucosal innate immunity and highlight the similarities in IEL functional responses to bacteria, viruses and protozoan parasite invasion. RECENT FINDINGS: IELs rapidly respond to microbial invasion by activating host defense responses, including the production of mucus and antimicrobial peptides to prevent microbes from reaching the epithelial surface. During active infection, IELs promote epithelial cytolysis, cytokine and chemokine production to limit pathogen invasion, replication and dissemination. Commensal-induced priming of IEL effector function or continuous surveillance of the epithelium may be important contributing factors to the rapidity of response. SUMMARY: Impaired microbial recognition, dysregulated innate immune signaling or microbial dysbiosis may limit the protective function of IELs and increase susceptibility to disease. Further understanding of the mechanisms regulating IEL surveillance and sentinel function may provide insight into the development of more effective targeted therapies designed to reinforce the mucosal barrier.

4.
BMC Biol ; 16(1): 19, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29391007

ABSTRACT

BACKGROUND: Mammalian small intestinal tight junctions (TJ) link epithelial cells to one another and function as a permselective barrier, strictly modulating the passage of ions and macromolecules through the pore and leak pathways, respectively, thereby preventing the absorption of harmful compounds and microbes while allowing regulated transport of nutrients and electrolytes. Small intestinal epithelial permeability is ascribed primarily to the properties of TJs between adjoining enterocytes (ENTs), because there is almost no information on TJ composition and the paracellular permeability of nonenterocyte cell types that constitute a small but significant fraction of the intestinal epithelia. RESULTS: Here we directed murine intestinal crypts to form specialized organoids highly enriched in intestinal stem cells (ISCs), absorptive ENTs, secretory goblet cells, or Paneth cells. The morphological and morphometric characteristics of these cells in organoids were similar to those in vivo. The expression of certain TJ proteins varied with cell type: occludin and tricellulin levels were high in both ISCs and Paneth cells, while claudin-1, -2, and -7 expression was greatest in Paneth cells, ISCs, and ENTs, respectively. In contrast, the distribution of claudin-15, zonula occludens 1 (ZO-1), and E-cadherin was relatively homogeneous. E-cadherin and claudin-7 marked mainly the basolateral membrane, while claudin-2, ZO-1, and occludin resided in the apical membrane. Remarkably, organoids enriched in ENTs or goblet cells were over threefold more permeable to 4 and 10 kDa dextran compared to those containing stem and Paneth cells. The TJ-regulator larazotide prevented the approximately tenfold increases in dextran flux induced by the TJ-disrupter AT1002 into organoids of different cell types, indicating that this ZO toxin nonselectively increases permeability. Forced dedifferentiation of mature ENTs results in the reacquisition of ISC-like characteristics in TJ composition and dextran permeability, suggesting that the post-differentiation properties of TJs are not hardwired. CONCLUSIONS: Differentiation of adult intestinal stem cells into mature secretory and absorptive cell types causes marked, but potentially reversible, changes in TJ composition, resulting in enhanced macromolecular permeability of the TJ leak pathway between ENTs and between goblet cells. This work advances our understanding of how cell differentiation affects the paracellular pathway of epithelia.


Subject(s)
Cell Membrane Permeability/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/ultrastructure , Tight Junctions/metabolism , Tight Junctions/ultrastructure , Animals , Cell Differentiation/physiology , Intestines/cytology , Intestines/ultrastructure , Mice , Organoids/cytology , Organoids/metabolism , Organoids/ultrastructure
5.
Curr Pharmacol Rep ; 3(6): 321-334, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29242771

ABSTRACT

PURPOSE OF REVIEW: Intestinal mucosal immunity is tightly regulated to ensure effective host defense against invasive microorganisms while limiting the potential for aberrant damage. In inflammatory bowel disease (IBD), an imbalance between effector and regulatory T cell populations results in an uncontrolled inflammatory response to commensal bacteria. Intraepithelial lymphocytes (IEL) are perfectly positioned within the intestinal epithelium to provide the first line of mucosal defense against luminal microbes or rapidly respond to epithelial injury. This review will highlight how IELs promote protective intestinal immunity and discuss the evidence indicating that altered IEL responses contribute to the pathogenesis of IBD. RECENT FINDINGS: Although the role of IELs in mucosal homeostasis has been largely underappreciated, many of the same factors that contribute to the dysregulation of host defense in IBD also adversely affect IELs. For example, IL-23 and the endoplasmic reticulum stress response can enhance IEL lytic activity toward enterocytes. Microbial dysbiosis or defective microbial recognition results in the loss of regulatory IELs, further amplifying these pro-inflammatory effects. Migration of T cells into or within the intraepithelial compartment has a profound effect on their differentiation or effector function demonstrating that IELs are exquisitely sensitive to changes in the local intestinal microenvironment. SUMMARY: Enhanced mechanistic insight into the regulation of IEL survival, differentiation and effector function may provide useful tools to modulate IEL surveillance or enhance IEL regulatory function. Elucidation of these processes may result in the development of novel therapeutics to reduce intestinal inflammation and reinforce the mucosal barrier in IBD.

6.
Cancer Lett ; 380(1): 289-95, 2016 09 28.
Article in English | MEDLINE | ID: mdl-26582656

ABSTRACT

The tumor microenvironment has a critical role in the survival and decision of the cancer cells. These include support by enhanced angiogenesis, and metastasis or adaptation of dormancy. This article discusses methods by which the microenvironment sustains the tumor. This process is important as it will identify avenues of drug targets. Non-coding RNAs (ncRNAs) are evolving as key mediators in the interaction between the cancer cells and the microenvironment. Thus, the question is how to develop methods to effectively block the effects of the ncRNA and/or to introduce them to prevent metastasis, dormancy or to reverse dormancy. We focused on the advantages of using mesenchymal stem cells (MSCs) for RNA delivery. MSCs can be available as "off-the-shelf" cells. Thus far, MSCs are shown to be safe when transplanted across allogeneic barriers. We discussed the various methods by which MSCs can interact with cancer cells to deliver ncRNA or antagomirs. We also include the advances and possible confounds of using these methods. Overall, this review article provides a potential method by which MSCs can be used for effective delivery of nucleic acid to treat cancer.


Subject(s)
Breast Neoplasms/metabolism , Cell Communication , Mesenchymal Stem Cells/metabolism , Neoplastic Stem Cells/metabolism , RNA, Untranslated/metabolism , Tumor Microenvironment , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Exosomes/metabolism , Female , Gap Junctions/metabolism , Gene Expression Regulation, Neoplastic , Genetic Therapy/methods , Humans , Mesenchymal Stem Cell Transplantation/methods , Neoplastic Stem Cells/pathology , Phenotype , RNA, Untranslated/genetics , Signal Transduction
7.
Cancer Lett ; 380(1): 263-71, 2016 09 28.
Article in English | MEDLINE | ID: mdl-26546045

ABSTRACT

Despite the success in detecting breast cancer (BC) early and, with aggressive therapeutic intervention, BC remains a clinical problem. The bone marrow (BM) is a favorable metastatic site for breast cancer cells (BCCs). In BM, the survival of BCCs is partly achieved by the supporting microenvironment, including the presence of immune suppressive cells such as mesenchymal stem cells (MSCs). The heterogeneity of BCCs brings up the question of how each subset interacts with the BM microenvironment. The cancer stem cells (CSCs) survive in the BM as cycling quiescence cells and, forming gap junctional intercellular communication (GJIC) with the hematopoietic supporting stromal cells and MSCs. This type of communication has been identified close to the endosteum. Additionally, dormancy can occur by soluble mediators such as cytokines and also by the exchange of exosomes. These latter mechanisms are reviewed in the context of metastasis of BC to the BM for transition as dormant cells. The article also discusses how immune cells such as macrophages and regulatory T-cells facilitate BC dormancy. The challenges of studying BC dormancy in 2-dimensional (2-D) system are also incorporated by proposing 3-D system by engineering methods to recapitulate the BM microenvironment.


Subject(s)
Bone Marrow Cells/pathology , Bone Marrow Neoplasms/secondary , Breast Neoplasms/pathology , Cell Proliferation , Neoplastic Stem Cells/pathology , Tumor Microenvironment , Animals , Antineoplastic Agents/therapeutic use , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Bone Marrow Neoplasms/drug therapy , Bone Marrow Neoplasms/immunology , Bone Marrow Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Cell Communication , Cell Survival , Drug Resistance, Neoplasm , Female , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...