Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37297154

ABSTRACT

In this study, near-liquidus squeeze casting AZ91D alloy was used to prepare differential support, and the microstructure and mechanical behavior under different applied pressure were investigated. Under the preset temperature, speed, and other process parameters, the effect of applied pressure on the microstructure and properties of formed parts was analyzed, and relevant mechanism was also discussed. The results showed that the ultimate tensile strength (UTS) and elongation (EL) of differential support can be improved by controlling real-time precision of the forming pressure. The dislocation density in the primary phase increased obviously with the pressure increasing from 80 MPa to 170 MPa, and even tangles appeared. When the applied pressure increased from 80 MPa to 140 MPa, the α-Mg grains were gradually refined, and the microstructure changed from rosette to globular shape. With increasing the applied pressure to 170 MPa, the grain could not be further refined. Similarly, its UTS and EL gradually increased with the applied pressure increasing from 80 MPa to 140 MPa. With increasing to 170 MPa, the UTS tended to be constant, but the EL gradually decreased. In other words, the UTS (229.2 MPa) and EL (3.43%) of the alloy reached the maximum when the applied pressure was 140 MPa, and the comprehensive mechanical properties were the best.

2.
Materials (Basel) ; 14(19)2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34640180

ABSTRACT

The refining performance of Al-Ti-C master alloys is substantially compromised by the inferior wettability between graphite and molten aluminum. In this paper, the Al-5Ti-0.25C master alloy was successfully prepared by reacting Ti machining chips, graphite, and molten aluminum. In order to determine a simple method of improving the wettability, the optimal preparation process and phase transformation of the Al-5Ti-0.25C master alloy were investigated using an optical microscope, X-ray diffractometer, and scanning electron microscope equipped with an energy dispersive spectrometer. The results show that the feeding method using a prefabricated block made from Ti chips, Al chips, and graphite effectively improves the wettability between graphite and molten aluminum and increases the recovery rate of graphite. When the reaction temperature is low (1223 K), the agglomeration of TiAl3 is caused. When the reaction temperature is high (1373 K), the morphology of TiAl3 changes from block-like to needle-like and increases its size. Further, a short reaction time (30 min) results in the incomplete dissolution of the Ti chips, while a long reaction time (90 min) causes the TiAl3 to transform into needle-like morphologies. The microstructural observation of undissolved Ti chips shows that TiAl3 and TiC are formed around it, which proves the transformation of Ti chips to TiAl3 and TiC. In addition, the enrichment of TiC and Al4C3 was observed in the vicinity of TiAl3, and a reaction model for the formation of TiC from the reaction of Al4C3 and TiAl3 was presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...