Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Front Pharmacol ; 15: 1336232, 2024.
Article in English | MEDLINE | ID: mdl-38708081

ABSTRACT

Background: Chrysin (5,7-dihydroxyflavone) is a natural flavonoid that has been reported as a potential treatment for non-alcoholic fatty liver disease (NAFLD). However, extensive phase II metabolism and poor aqueous solubility led to a decrease in the chrysin concentration in the blood after oral administration, limiting its pharmacological development in vivo. Methods: In the present study, we synthesized a novel chrysin derivative prodrug (C-1) to address this issue. We introduced a hydrophilic prodrug group at the 7-position hydroxyl group, which is prone to phase II metabolism, to improve water solubility and mask the metabolic site. Further, we evaluated the ameliorative effects of C-1 on NAFLD in vitro and in vivo by NAFLD model cells and db/db mice. Results: In vitro studies indicated that C-1 has the ability to ameliorate lipid accumulation, cellular damage, and oxidative stress in NAFLD model cells. In vivo experiments showed that oral administration of C-1 at a high dose (69.3 mg/kg) effectively ameliorated hyperlipidemia and liver injury and reduced body weight and liver weight in db/db mice, in addition to alleviating insulin resistance. Proteomic analysis showed that C-1 altered the protein expression profile in the liver and particularly improved the expression of proteins associated with catabolism and metabolism. Furthermore, in our preliminary pharmacokinetic study, C-1 showed favorable pharmacokinetic properties and significantly improved the oral bioavailability of chrysin. Conclusion: Our data demonstrated that C-1 may be a promising agent for NAFLD therapy.

2.
J Chromatogr Sci ; 62(3): 241-248, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-36617938

ABSTRACT

ß-nicotinamide mononucleotide (NMN) has a good effect on delaying aging, repairing DNA and ameliorating metabolic disease. Biosynthesis with nicotinamide riboside kinase (NRK) takes a large part in NMN manufacture, but there is no available NMN quality standard and analytical method at present. In this study, we developed a specific high-performance liquid chromatography method for the assessment of NMN-related substances, including NMN and its potential impurities from NRK biological production and storage. Forced degradation study was performed under acid, base, oxidative, photolytic and thermal conditions. The separation of related substances was achieved on an Elite Hypersil ODS column using phosphate buffer-methanol gradient at a flow rate of 1.0 mL/min. The detection wavelength was maintained at 260 nm. The resolutions among all related substances were better than 1.5. Significant degradation was observed in basic and thermal conditions. All related substances showed good linearity with a coefficient of determination (R2) higher than 0.999. The accuracy values of all related substances were between 91.2% and 108.6%. Therefore, the validated analytical method is appropriate for inspecting the quality of NMN in its NRK biosynthetic manufacture and storage, thus further helping to unify NMN quality standards and facilitate related studies on NMN.


Subject(s)
Nicotinamide Mononucleotide , Nicotinamide Mononucleotide/metabolism , Chromatography, High Pressure Liquid
4.
Stem Cell Res Ther ; 14(1): 166, 2023 06 25.
Article in English | MEDLINE | ID: mdl-37357311

ABSTRACT

Age-associated bone diseases such as osteoporosis (OP) are common in the elderly due to skeletal ageing. The process of skeletal ageing can be accelerated by reduced proliferation and osteogenesis of bone marrow mesenchymal stem cells (BM-MSCs). Senescence of BM-MSCs is a main driver of age-associated bone diseases, and the fate of BM-MSCs is tightly regulated by histone modifications, such as methylation and acetylation. Dysregulation of histone modifications in BM-MSCs may activate the genes related to the pathogenesis of skeletal ageing and age-associated bone diseases. Here we summarize the histone methylation and acetylation marks and their regulatory enzymes that affect BM-MSC self-renewal, differentiation and senescence. This review not only describes the critical roles of histone marks in modulating BM-MSC functions, but also underlines the potential of epigenetic enzymes as targets for treating age-associated bone diseases. In the future, more effective therapeutic approaches based on these epigenetic targets will be developed and will benefit elderly individuals with bone diseases, such as OP.


Subject(s)
Bone Diseases , Mesenchymal Stem Cells , Humans , Aged , Histone Code , Cell Differentiation/genetics , Aging/genetics , Osteogenesis/genetics , Bone Marrow Cells , Cells, Cultured
5.
Bioresour Technol ; 380: 128999, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37011844

ABSTRACT

An innovative partial nitrification and short-cut sulfur autotrophic denitrification (PN-SSAD, NH4+-N â†’ NO2--N â†’ N2) coupled system in a single-stage SBR was proposed to treat low C/N wastewater with low material and energy consumption. Nearly 50 % alkalinity consumption and 40 % sulfate production were reduced in S0-SSAD compared with S0-SAD, whereas the autotrophic denitrification rate was increased by 65 %. In S0-PN-SSAD, the TN removal efficiency reached almost 99 % without additional organic carbon. Furthermore, pyrite (FeS2) rather than S0 served as the electron donor to optimize the PN-SSAD process. The practical sulfate production in S0-PN-SSAD and FeS2-PN-SSAD were about 38 % and 52 % lower than complete nitrification and sulfur autotrophic denitrification (CN-SAD), respectively. Thiobacillus was the major autotrophic denitrification bacteria in S0-PN-SSAD (34.47 %) and FeS2-PN-SSAD (14.88 %). Nitrosomonas and Thiobacillus played a synergistic effect in the coupled system. FeS2-PN-SSAD is expected as an alternative technology for nitrification and heterotrophic denitrification (HD) in treating low C/N wastewater.


Subject(s)
Nitrification , Thiobacillus , Nitrogen/analysis , Denitrification , Wastewater , Sulfur , Autotrophic Processes , Sulfates , Bioreactors , Oxidation-Reduction
6.
Acta Pharm Sin B ; 13(2): 804-818, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36873172

ABSTRACT

Neoadjuvant chemotherapy has become an indispensable weapon against high-risk resectable cancers, which benefits from tumor downstaging. However, the utility of chemotherapeutics alone as a neoadjuvant agent is incapable of generating durable therapeutic benefits to prevent postsurgical tumor metastasis and recurrence. Herein, a tactical nanomissile (TALE), equipped with a guidance system (PD-L1 monoclonal antibody), ammunition (mitoxantrone, Mit), and projectile bodies (tertiary amines modified azobenzene derivatives), is designed as a neoadjuvant chemo-immunotherapy setting, which aims at targeting tumor cells, and fast-releasing Mit owing to the intracellular azoreductase, thereby inducing immunogenic tumor cells death, and forming an in situ tumor vaccine containing damage-associated molecular patterns and multiple tumor antigen epitopes to mobilize the immune system. The formed in situ tumor vaccine can recruit and activate antigen-presenting cells, and ultimately increase the infiltration of CD8+ T cells while reversing the immunosuppression microenvironment. Moreover, this approach provokes a robust systemic immune response and immunological memory, as evidenced by preventing 83.3% of mice from postsurgical metastasis or recurrence in the B16-F10 tumor mouse model. Collectively, our results highlight the potential of TALE as a neoadjuvant chemo-immunotherapy paradigm that can not only debulk tumors but generate a long-term immunosurveillance to maximize the durable benefits of neoadjuvant chemotherapy.

7.
Front Public Health ; 10: 981306, 2022.
Article in English | MEDLINE | ID: mdl-36478721

ABSTRACT

Nowadays, innovation seems to be the inevitable choice to achieve stable economic growth. However, the negative impact of air pollution on health and economy makes air pollution an important factor in regional innovation, which deserves our discussion. The overall regional innovation level from 2014 to 2019 has an upward trend, while the overall air pollution has a downward trend during the period, which provides foundation for our research. Based on the data of 285 prefecture-level cities in China from 2014 to 2019, this paper uses the fixed effect and mediation model to verify the impact and mechanism of air pollution on regional innovation. The results show that the increase in air pollution, measured by the air quality index, significantly inhibits regional innovation. Air pollution has significant funds crowding-out effect and human capital loss effect, thereby decreasing the regional innovation level, which means innovation funds and researchers play a conductive role between air pollution and regional innovation. In heterogeneity analysis, it is found that the detrimental effect of air pollution on regional innovation is significant in eastern and central China, in large- and medium-sized cities, and in cities with poor or general air quality. It indicates that developed and large-scale regions should pay more attention to air pollution control. For polluted regions, more emphasis and endeavors are needed to address air pollution problems. Besides, the inhibitory effect is more severe on incremental innovation rather than on radical innovation, which deserves the attention of enterprises engaged in incremental innovation. Therefore, we propose that targeted environmental policies and effective measures should be developed to improve air quality in the long run. Moreover, policymakers could provide strong support for innovation grants, talent subsidies, and rewards and encourage clean technological innovation through short-term trade-offs between heavily polluting and low polluting enterprises.


Subject(s)
Air Pollution , East Asian People , Humans , Cities , Economic Development , China
8.
Front Pharmacol ; 13: 1014854, 2022.
Article in English | MEDLINE | ID: mdl-36506586

ABSTRACT

7-Ethyl-10-hydroxycamptothecin (SN38), a highly potent metabolite of irinotecan, has an anticancer efficacy 100-1000 folds more than irinotecan in vitro. However, the clinical application of SN38 has been limited due to the very narrow therapeutic window and poor water solubility. Herein, we report the SN38-glucose conjugates (Glu-SN38) that can target cancer cells due to their selective uptake via glucose transporters, which are overexpressed in most cancers. The in vitro antiproliferative activities against human cancer cell lines and normal cells of Glu-SN38 were investigated. One of the conjugates named 5b showed high potency and selectivity against human colorectal cancer cell line HCT116. Furthermore, 5b remarkably inhibited the growth of HCT116 in vivo. These results suggested that 5b could be a promising drug candidate for treating colorectal cancer.

9.
Mol Biomed ; 3(1): 46, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36536188

ABSTRACT

Proteolysis targeting chimeras (PROTACs) technology has emerged as a novel therapeutic paradigm in recent years. PROTACs are heterobifunctional molecules that degrade target proteins by hijacking the ubiquitin-proteasome system. Currently, about 20-25% of all protein targets are being studied, and most works focus on their enzymatic functions. Unlike small molecules, PROTACs inhibit the whole biological function of the target protein by binding to the target protein and inducing subsequent proteasomal degradation. PROTACs compensate for limitations that transcription factors, nuclear proteins, and other scaffolding proteins are difficult to handle with traditional small-molecule inhibitors. Currently, PROTACs have successfully degraded diverse proteins, such as BTK, BRD4, AR, ER, STAT3, IRAK4, tau, etc. And ARV-110 and ARV-471 exhibited excellent efficacy in clinical II trials. However, what targets are appropriate for PROTAC technology to achieve better benefits than small-molecule inhibitors are not fully understood. And how to rationally design an efficient PROTACs and optimize it to be orally effective poses big challenges for researchers. In this review, we summarize the features of PROTAC technology, analyze the detail of general principles for designing efficient PROTACs, and discuss the typical application of PROTACs targeting different protein categories. In addition, we also introduce the progress of relevant clinical trial results of representative PROTACs and assess the challenges and limitations that PROTACs may face. Collectively, our studies provide references for further application of PROTACs.

10.
Eur J Med Chem ; 244: 114775, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36208507

ABSTRACT

HER2 is a validated therapeutic target for HER2 positive breast cancer and gastric cancer. TKIs have significantly improved the prognosis of patients with HER2 positive cancer. However, the pan-HER TKIs always caused gastrointestinal and skin side effects, and acquired drug resistance inevitable compromised their therapeutic efficacy. Herein, we describe the discovery of the first potent and selective HER2 PROTAC degrader based Tucatinib with improved antitumor activity in vitro and in vivo. The preferred selective HER2 PROTAC, CH7C4, efficiently degraded HER2 with DC50 of 69 nM and Dmax of 96%, and inhibited the proliferation of BT-474 cells with IC50 of 0.047 ± 0.006 nM via long lasting HER2 degradation and strong repression of downstream pathway. Moreover, CH7C4 had acceptable pharmacokinetic profiles with a half-life of 5.31 h, and significantly inhibited the growth of BT-474 xenografts in vivo with TGI of 73%. As the first selective HER2 PROTAC degrader with better activity in vitro and in vivo than Tucatinib, CH7C4 provides new insights into the development of new therapeutic strategy for HER2 positive cancer.


Subject(s)
Breast Neoplasms , Quinazolines , Humans , Female , Quinazolines/therapeutic use , Pyridines/therapeutic use , Oxazoles , Breast Neoplasms/pathology , Receptor, ErbB-2/metabolism
11.
Front Oncol ; 12: 829235, 2022.
Article in English | MEDLINE | ID: mdl-35299731

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) is a highly lethal hepatobiliary neoplasm, which originates from the bile ducts proximal to the second-order division. ICC can be anatomically divided into two subtypes: the large duct type (mucin-production ICC, muc-ICC) and the small duct type (mixed-ICC) origins from hepatic progenitor cells (HPCs). The immunoreactivity of S100P and neural cell adhesion molecule (NCAM) are useful biomarkers to distinguish the two subtypes. In this study, we report a difficult-to-diagnose case of metastatic retroperitoneal tumor of occult hepatolithiasis-associated ICC. Besides, this case was both positive for S100P and NCAM, considered as a rare muc-ICC with the HPCs features. Tumor whole exome sequencing detection results by Genetron (China) revealed that there were 41 gene mutations in this patient. The SMAD4-p.His530ThrfsTer47 and KRAS-p.Gly12Val mutation might promote the occurrence and distant metastasis of the tumor.

12.
Acta Pharm Sin B ; 10(10): 1943-1953, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33163345

ABSTRACT

Cancer immunotherapy is revolutionizing oncology and has emerged as a promising strategy for the treatment of multiple cancers. Indoleamine 2,3-dioxygenase 1 (IDO1), an immune checkpoint, plays an important role in tumor immune escape through the regulation of multiple immune cells and has been regarded as an attractive target for cancer immunotherapy. Proteolysis Targeting Chimeras (PROTAC) technology has emerged as a new model for drug research and development for its advantageous mechanism. Herein, we reported the application of PROTAC technology in targeted degradation of IDO1, leading to the discovery of the first IDO1 PROTAC degrader 2c, which induced significant and persistent degradation of IDO1 with maximum degradation (d max) of 93% in HeLa cells. Western-blot based mechanistic studies indicated that IDO1 was degraded by 2c through the ubiquitin proteasome system (UPS). Label-free real-time cell analysis (RTCA) indicated that 2c moderately improved tumor-killing activity of chimeric antigen receptor-modified T (CAR-T) cells. Collectively, these data provide a new insight for the application of PROTAC technology in tumor immune-related proteins and a promising tool to study the function of IDO1.

13.
Anal Methods ; 12(26): 3333-3336, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32930219

ABSTRACT

A novel mitochondrial-targeted deep-red fluorescence ATP probe, NIR-A, is reported. The probe showed a fast, selective, and reversible response for ATP with a significant turn-on fluorescence signal at 663 nm with a large Stokes shift of 81 nm. Additionally, the introduction of TPP enabled TPP-endowed NIR-A to be enriched predominantly in the mitochondria. NIR-A was successfully applied to monitor ATP fluctuation in Ramos cells and zebrafish in real-time with good biocompatibility.


Subject(s)
Fluorescent Dyes , Zebrafish , Adenosine Triphosphate , Animals , Humans , Microscopy, Fluorescence , Mitochondria
14.
Oncol Lett ; 20(1): 765-773, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32566003

ABSTRACT

Various surgical methods impact the prognosis of patients with hepatocellular carcinoma (HCC) differently. However, clinical guidelines remain inconsistent and the relative importance of predictors of survival outcomes requires further evaluation. The present study aimed to rank the importance of predictive factors that impact the survival outcomes of patients with HCC and to compare the prognosis associated with different surgical methods based on data obtained from the Surveillance, Epidemiology and End Results database. To achieve these aims, the present study used a random forest (RF) model to detect important predictive factors associated with survival outcomes in patients with HCC. Cox regression analysis was used to compare different surgery methods. The variables included in the Cox regression model were selected based on the Gini index calculated by the RF model. Using the RF model, the present study demonstrated that surgery method, tumor size and age were the first, second and third most important factors associated with HCC prognosis, respectively. Overall, patients who underwent local tumor destruction [(hazard ratio (HR)=0.48; 95% confidence interval (CI), 0.45-0.51; P<0.001)], wedge or segmental resection (HR, 0.31; 95% CI, 0.29-0.33; P<0.001), lobectomy (HR, 0.29, 95% CI, 0.27-0.31; P<0.001) or liver transplantation (HR, 0.16; 95% CI, 0.14-0.17; P<0.001) demonstrated improved overall survival time compared with those treated with surgery, with a gradual decreasing trend observed in HRs. The present study demonstrated that the surgical method used is the most important predictor of the survival outcomes of patients with HCC. Liver transplantation resulted in the best prognosis for patients with HCC, except for those with undifferentiated tumors or distant metastasis.

15.
Biomed Pharmacother ; 125: 109703, 2020 May.
Article in English | MEDLINE | ID: mdl-32062551

ABSTRACT

High rate of glycolysis supports hepatocellular carcinoma (HCC) cell growth even in a hypoxic environment. However, the mechanism underlying glycolysis under hypoxia remains largely unknown. Long noncoding RNAs (lncRNAs) play essential roles in regulating glucose metabolism in cancers. This study aimed to explore the role of lncRNA homeobox transcript antisense RNA (HOTAIR) in HCC glycolysis under hypoxia. Thirty-eight HCC patients were recruited. HepG2 and Huh7 cells were used for study in vitro. The expression levels of HOTAIR, microRNA-130a-3p (miR-130a-3p) and hypoxia inducible factor 1 alpha (HIF1A) were measured by quantitative real-time polymerase chain reaction and western blot, respectively. The glycolysis under hypoxia (1 % O2) condition was investigated by glucose consumption, lactate production and hexokinase 2 (HK2) level. The target interaction between miR-130a-3p and HOTIR or HIF1A was analyzed by bioinformatics analysis, luciferase assay, RNA pull-down and RNA immunoprecipitation. We found that HOTAIR expression was enhanced in HCC tissues and cells. Under hypoxia condition, HOTAIR expression was increased and its knockdown inhibited glycolysis in HCC cells. HOTAIR was validated as a decoy of miR-130a-3p and miR-130a-3p deficiency reversed the suppressive effect of HOTAIR silence on glycolysis under hypoxia. HIF1A was indicated as a target of miR-130a-3p and miR-130a-3p overexpression repressed glycolysis under hypoxia by targeting HIF1A. Moreover, HIF1A expression was regulated by HOTAIR and miR-130a-3p. In conclusion, knockdown of HOTAIR suppressed glycolysis by regulating miR-130a-3p and HIF1A in HCC cells treated by hypoxia, elucidating a novel mechanism in HCC glycolysis.


Subject(s)
Carcinoma, Hepatocellular/genetics , Glycolysis/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Female , Hexokinase/metabolism , Humans , Hypoxia , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , RNA, Long Noncoding/metabolism
16.
J Biomed Nanotechnol ; 16(10): 1504-1517, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33422162

ABSTRACT

Tenofovir (TFV), an acyclic nucleoside analog, exhibits potent anti-HBV activity. However, poor bioavailability, nephrotoxicity and bone toxicity limit its further clinical application. In this work, a novel tenofovir-loaded glycyrrhetinic acidmodified cationic liposome (TGCL) was prepared for targeted therapy of HBV. The TGCL had an average particle size of 107.39 ± 1.21 nm and an entrapment efficiency of 89.83 ± 2.70% with a positive zeta potential of 37.63 ± 1.22 mV. The results of in vitro indicated that the inhibitory effects on HBsAg, HBeAg and HBV cccDNA of TGCL in HepG2.2.15 cells were significantly better than that of free TFV and non-targeted cationic liposome. In the DHBV-infected duck model, TGCL showed remarkably suppression on DHBV DNA than that of free TFV. Overall, TGCL is a promising formulation of TFV for targeted therapy of HBV.


Subject(s)
Antiviral Agents , Glycyrrhetinic Acid , Hepatitis B , Animals , DNA, Viral/therapeutic use , Glycyrrhetinic Acid/therapeutic use , Hepatitis B virus , Liposomes , Tenofovir/therapeutic use
17.
Eur J Med Chem ; 182: 111608, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31437779

ABSTRACT

Androgen receptor (AR) has been a target of prostate cancer (PC) for nearly six decades. Recently, downregulating or degrading AR and the mutants especially the splice variant 7 (AR-V7) lacking ligand binding domain (LBD) emerged as an advantageous therapeutic approach to overcome drug resistance. Here, the structural modification of darolutamide resulted in the discovery of dual-action AR inhibitors and down-regulators. Unlike other traditional AR antagonists targeting the AR-LBD, compounds 4k and 4b not only inhibit the activities of wt-AR and AR-F876L mutant but also downregulate the protein expression of full-length (AR-full) and AR variant 7 (AR-V7) at mRNA level. In cell proliferation assays, compounds 4k and 4b exhibited better antiproliferative activities than darolutamide and enzalutamide against AR-V7-positive 22Rv1 cells and VCaP cells. In addition, 4k demonstrated better antitumor activity than clinically used enzalutamide in castration-resistant VCaP xenograft model. Collectively, combining the activities of AR inhibition and downregulation, compound 4k is proposed as an advantageous lead compound to disrupt AR signaling and overcome resistance.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Down-Regulation/drug effects , Drug Discovery , Pyrazoles/pharmacology , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/chemical synthesis , Androgen Receptor Antagonists/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Mutation , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Receptors, Androgen/genetics , Structure-Activity Relationship
18.
Eur J Med Chem ; 161: 48-77, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30342425

ABSTRACT

Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD+), waves of research have assessed the potential of Sirtuin as a therapeutic target. The Sirtuin family, which is widely distributed throughout the nature, has been divided into seven human isoforms (Sirt1-Sirt7). They are thought to be closely related to some aging diseases such as cardiovascular disorders, neurodegeneration, and tumors. Herein, we present a comprehensive review of the structure, function and modulators of Sirtuins, which is expected to be beneficial to relevant studies.


Subject(s)
Enzyme Inhibitors/pharmacology , Sirtuins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Sirtuins/chemistry , Sirtuins/metabolism , Small Molecule Libraries/chemistry , Structure-Activity Relationship
19.
World J Gastroenterol ; 24(45): 5120-5130, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30568389

ABSTRACT

AIM: To elucidate the underlying mechanism that microRNA-22 (miR-22) promotes the apoptosis of rat pancreatic acinar cells (AR42J) and the elements that regulate the expression of miR-22. METHODS: One hundred nanomoles per liter of caerulein (Cae) was administrated to induce the apoptosis of AR42J cells and the apoptosis rate was detected by flow cytometry analysis. An amylase assay kit was used to measure the amylase expression level in the supernatant. Quantitative real-time PCR (qRT-PCR) was adopted to measure miR-22 expression. We used online tools to predict the potential transcription promoter of miR-22 and the binding sites, which was further identified by using luciferase reporter analysis, chromatin immunoprecipitation (ChIP) and ChIP-qPCR assays. Then, a mimic of miR-22, Nr3c1 plasmid encoding the glucocorticoid receptor (GR), and si-Nr3c1 were used to transfect AR42J cells, respectively. The mRNA expression of miR-22, Nr3c1, and Erb-b2 receptor tyrosine kinase 3 (ErbB3) was confirmed by qRT-PCR and the apoptosis rate of AR42J cells was detected by flow cytometry analysis. Western blot was used to detect the expression of ErbB3, GR, PI3k, PI3k-p85α, Akt, p-Akt, Bad, Bax, Bcl-xl, Bcl-2, and cleaved caspase3. RESULTS: After inducing apoptosis of AR42J cells in vitro, the expression of miR-22 was significantly increased by 2.20 ± 0.26 and 4.19 ± 0.54 times, respectively, at 3 h and 6 h in comparison with the control group. As revealed by qRT-PCR assay, the expression of miR-22 was 78.25 ± 6.61 times higher in the miR-22 mimic group relative to the miRNA control group, accompanied with an obviously increased acinar cell apoptosis rate (32.53 ± 1.15 vs 18.07 ± 0.89, P = 0.0006). The upregulation of miR-22 could suppress its target gene, ErbB3, and the phosphorylation of PI3k and Akt. Furthermore, we predicted the potential transcription promoter of miR-22 and the binding sites using online tools. Luciferase reporter analysis and site-directed mutagenesis indicated that the binding site (GACAGCCATGTACA) of the GR, which is encoded by the Nr3c1 gene. Downregulation of the expression of GR could upregulate the expression of miR-22, which further promoted the apoptosis of AR42J cells. CONCLUSION: GR transcriptionally represses the expression of miR-22, which further promotes the apoptosis of pancreatic acinar cells by downregulating the downstream signaling pathway.


Subject(s)
Acinar Cells/physiology , Apoptosis/genetics , MicroRNAs/metabolism , Receptors, Glucocorticoid/metabolism , Signal Transduction/genetics , Animals , Apoptosis/drug effects , Cell Line , Ceruletide/pharmacology , Down-Regulation , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Pancreas/cytology , RNA, Small Interfering/metabolism , Rats , Receptors, Glucocorticoid/genetics , Transcription Initiation Site , Up-Regulation
20.
Front Psychiatry ; 9: 226, 2018.
Article in English | MEDLINE | ID: mdl-29942265

ABSTRACT

Background: Subjective cognitive decline (SCD) may be the first clinical sign of Alzheimer's disease (AD). SCD individuals with normal cognition may already have significant medial temporal lobe atrophy. However, few studies have been devoted to exploring the alteration of left-right asymmetry with hippocampus and amygdala in SCD. The aim of this study was to compare SCD individuals with amnestic mild cognitive impairment (MCI) patients and the normal population for volume and asymmetry of hippocampus, amygdala and temporal horn, and to assess their relationship with cognitive function in elderly population living in China. Methods: 111 SCD, 30 MCI, and 67 healthy controls (HC) underwent a standard T1-weighted MRI, from which the volumes of the hippocampus and amygdala were calculated and compared. Then we evaluated the pattern and extent of asymmetry in hippocampus and amygdala of these samples. Furthermore, we also investigated the relationship between the altered brain regions and cognitive function. Results: Among the three groups, SCD showed more depressive symptoms (p < 0.001) and higher percentage of heart disease (16.4% vs. 35.1%, p = 0.007) than controls. In terms of brain data, significant differences were found in the volume and asymmetry of both hippocampus and amygdala among the three groups (P < 0.05). In logistic analysis controlled by age, gender, education level, depression symptoms, anxiety symptom, somatic disease and lifestyle in terms of smoking, both SCD and MCI individuals showed significant decreased right hippocampal and amygdala volume than controls. For asymmetry pattern, a ladder-shaped difference of left-larger-than-right asymmetry was found in amygdala with MCI>SCD>HC, and an opposite asymmetry of left-less-than-right pattern was found with HC>SCD>MCI in hippocampus. Furthermore, correlation was shown between the volume of right hippocampus and right amygdala with MMSE and MoCA in SCD group. Conclusion: Our results supported that SCD individuals are biologically distinguishable from HC, and this may relate to cognitive impairment, although more longitudinal studies are need to investigate this further.Moreover, different levels of asymmetry in hippocampus and amygdala might be a potential dividing factor to differentiate clinical diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...