Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 110: 110708, 2020 May.
Article in English | MEDLINE | ID: mdl-32204020

ABSTRACT

Magnetic fibrous membrane used to generate heat under the alternating magnetic field (AMF) has attracted wide attention due to their application in magnetic hyperthermia. However, there is not magnetic fibrous membrane prepared by melt electrospinning (e-spinning) which is a solvent-free, bio-friendly technology. In this work, polycaprolactone (PCL)/Fe3O4 fiber membrane was prepared by melt e-spinning and using homemade self-powered portable melt e-spinning apparatus. The hand-held melt e-spinning apparatus has a weight of about 450 g and a precise size of 24 cm in length, 6 cm in thickness and 13 cm in height, which is more portable for widely using in the medical field. The PCL/Fe3O4 composite fibers with diameters of 4-17 µm, are very uniform. In addition, the magnetic composite fiber membrane has excellent heating efficiency and thermal cycling characteristics. The results indicated that self-powered portable melt e-spinning apparatus and PCL/Fe3O4 fiber membrane may provide an attractive way for hyperthermia therapy.


Subject(s)
Hyperthermia, Induced , Magnetic Iron Oxide Nanoparticles/chemistry , Membranes, Artificial , Nanofibers/chemistry , Polyesters/chemistry , Humans , Magnetic Iron Oxide Nanoparticles/ultrastructure , Nanofibers/ultrastructure
2.
Mater Sci Eng C Mater Biol Appl ; 101: 380-386, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31029331

ABSTRACT

An auxiliary electrode electrospinning method is proposed to deposit N-octyl-2-cyanoacrylate (NOCA) medical glue fibrous membrane on kidney for in-situ fast hemostasis. A metal electrode equipped to the spinning needle is used to confine the divergence angle of jet. Compared to the conventional electrospinning method, the fiber deposition area has reduced by 2.5 times, and it can achieve in-situ accurate deposition. Moreover, it reduces both the external dimension and over-reliance on electricity, which is superior to previous air-flow assisted electrospinning method. In addition, in situ accurate deposition of NOCA on the kidney exhibits fast hemostasis within 10 s, confirming that this auxiliary electrode method can be applied in outdoors for fast hemostasis. Further pathological studies indicate that this auxiliary electrode method can reduce the inflammatory response of tissues due to the better accurate deposition. This portable hand-held device with the auxiliary electrode method may have potential application in fast hemostasis for outdoors due to its accurate deposition and portability characteristics.


Subject(s)
Adhesives/pharmacology , Electroplating/methods , Hemostasis/drug effects , Kidney/drug effects , Animals , Blood Cell Count , Electric Stimulation , Electrodes , Kidney/pathology , Male , Rats, Sprague-Dawley , Spectroscopy, Fourier Transform Infrared , Swine
3.
Nanoscale Res Lett ; 13(1): 278, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30203107

ABSTRACT

Precise deposition of nanofibers is still an important issue in the applications of electrospinning (e-spinning), especially in rapid hemostasis of organs such as the liver, lung, and kidney. In this study, we propose an electric field-modified e-spinning technique with a metal cone attached to the spinning nozzle to realize controllable precise deposition of fibers. The deposition range of the e-spun fibers is tunable by changing the size of the metal cone, and the mechanism is attributed the focused electric field verified by theoretical simulations. This electric field-modified e-spinning method was further used to in situ precisely deposit medical glue N-octyl-2-cyanoacrylate (NOCA) fibers onto the resection site of rat liver to realize rapid hemostasis within 10 s. Postoperative pathological results indicate that less inflammatory response and tissue adhesion are observed in this electric field-modified e-spinning group compared with that of traditional airflow-assisted group. This technique combined with our designed handheld e-spinning device could be used in emergency medical treatment, clinics, field survival, and home care for its portability and precise deposition characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...