Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
J Am Chem Soc ; 146(21): 14422-14426, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38709624

ABSTRACT

Here we report a concise and divergent synthesis of scabrolide A and havellockate, representative members of polycyclic marine natural product furano(nor)cembranoids. The synthesis features a highly efficient exo-exo-endo radical cascade. Through the generation of two rings, three C-C bonds, and three contiguous stereocenters in one step, this remarkable transformation not only assembles the bowl-shaped, common 6-5-5 fused ring system from simple building blocks but also precisely installs the functionalities at desired positions and sets the stage for further divergent preparation of both target molecules. Further studies reveal that the robust and unusual 6-endo radical addition in the cascade is likely facilitated by the rigidity of the substrate.

2.
Front Pharmacol ; 15: 1396656, 2024.
Article in English | MEDLINE | ID: mdl-38720777

ABSTRACT

Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of cardiovascular mortality and is increasingly prevalent in our population. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) can safely and effectively lower glucose levels while concurrently managing the full spectrum of ASCVD risk factors and improving patients' long-term prognosis. Several cardiovascular outcome trials (CVOTs) have been carried out to further investigate the cardiovascular benefits of GLP-1RAs. Analyzing data from CVOTs can provide insights into the pathophysiologic mechanisms by which GLP-1RAs are linked to ASCVD and define the use of GLP-1RAs in clinical practice. Here, we discussed various mechanisms hypothesized in previous animal and preclinical human studies, including blockade of the production of adhesion molecules and inflammatory factors, induction of endothelial cells' synthesis of nitric oxide, protection of mitochondrial function and restriction of oxidative stress, suppression of NOD-like receptor thermal protein domain associated protein three inflammasome, reduction of foam cell formation and macrophage inflammation, and amelioration of vascular smooth muscle cell dysfunction, to help explain the cardiovascular benefits of GLP-1RAs in CVOTs. This paper provides an overview of the clinical research, molecular processes, and possible therapeutic applications of GLP-1RAs in ASCVD, while also addressing current limitations in the literature and suggesting future research directions.

3.
Cell Mol Biol Lett ; 29(1): 56, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643083

ABSTRACT

During growth phase, antlers exhibit a very rapid rate of chondrogenesis. The antler is formed from its growth center reserve mesenchyme (RM) cells, which have been found to be the derivatives of paired related homeobox 1 (Prrx1)-positive periosteal cells. However, the underlying mechanism that drives rapid chondrogenesis is not known. Herein, the miRNA expression profiles and chromatin states of three tissue layers (RM, precartilage, and cartilage) at different stages of differentiation within the antler growth center were analyzed by RNA-sequencing and ATAC-sequencing. We found that miR-140-3p was the miRNA that exhibited the greatest degree of upregulation in the rapidly growing antler, increasing from the RM to the cartilage layer. We also showed that Prrx1 was a key upstream regulator of miR-140-3p, which firmly confirmed by Prrx1 CUT&Tag sequencing of RM cells. Through multiple approaches (three-dimensional chondrogenic culture and xenogeneic antler model), we demonstrated that Prrx1 and miR-140-3p functioned as reciprocal negative feedback in the antler growth center, and downregulating PRRX1/upregulating miR-140-3p promoted rapid chondrogenesis of RM cells and xenogeneic antler. Thus, we conclude that the reciprocal negative feedback between Prrx1 and miR-140-3p is essential for balancing mesenchymal proliferation and chondrogenic differentiation in the regenerating antler. We further propose that the mechanism underlying chondrogenesis in the regenerating antler would provide a reference for helping understand the regulation of human cartilage regeneration and repair.


Subject(s)
Antlers , Homeodomain Proteins , MicroRNAs , Animals , Cartilage/metabolism , Cell Differentiation/genetics , Chondrogenesis/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
4.
Nat Commun ; 15(1): 3299, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632245

ABSTRACT

Improving the absorption of electromagnetic waves at low-frequency bands (2-8 GHz) is crucial for the increasing electromagnetic (EM) pollution brought about by the innovation of the fifth generation (5G) communication technology. However, the poor impedance matching and intrinsic attenuation of material in low-frequency bands hinders the development of low-frequency electromagnetic wave absorbing (EMWA) materials. Here we propose an interface-induced dual-pinning mechanism and establish a magnetoelectric bias interface by constructing bilayer core-shell structures of NiFe2O4 (NFO)@BiFeO3 (BFO)@polypyrrole (PPy). Such heterogeneous interface could induce distinct magnetic pinning of the magnetic moment in the ferromagnetic NFO and dielectric pinning of the dipole rotation in PPy. The establishment of the dual-pinning effect resulted in optimized impedance and enhanced attenuation at low-frequency bands, leading to better EMWA performance. The minimum reflection loss (RLmin) at thickness of 4.43 mm reaches -65.30 dB (the optimal absorption efficiency of 99.99997%), and the effective absorption bandwidth (EAB) can almost cover C-band (4.72 ~ 7.04 GHz) with low filling of 15.0 wt.%. This work proposes a mechanism to optimize low-frequency impedance matching with electromagnetic wave (EMW) loss and pave an avenue for the research of high-performance low-frequency absorbers.

5.
Surg Infect (Larchmt) ; 25(4): 329-331, 2024 May.
Article in English | MEDLINE | ID: mdl-38608243

ABSTRACT

Background: Vibrio vulnificus infections develop rapidly and have high mortality and disability rates. Vibrio vulnificus can cause local wound infection, gastroenteritis, or septicemia. Case Presentation: In this case, an 86-year-old male was accidentally stabbed in the middle of his right thumb while cleaning whitewater fish and came to the emergency department with high fever and painful swelling of the right hand. Physical examination revealed hemorrhagic bullae in the right hand. Emergency surgery and bacterial culture were performed. Because of timely antibiotic use and surgical treatment, the patient eventually recovered and was discharged from the hospital. Conclusions: This case suggests that the possibility of Vibrio vulnificus should be considered in cases of severe infection of the extremities, even without a history of seafood consumption or seawater exposure. Early recognition, rational choice of antibiotic agents, and timely wound debridement can substantially improve the prognosis of patients and reduce mortality.


Subject(s)
Anti-Bacterial Agents , Fasciitis, Necrotizing , Sepsis , Vibrio Infections , Vibrio vulnificus , Humans , Fasciitis, Necrotizing/microbiology , Fasciitis, Necrotizing/surgery , Male , Vibrio vulnificus/isolation & purification , Vibrio Infections/diagnosis , Vibrio Infections/drug therapy , Vibrio Infections/microbiology , Vibrio Infections/surgery , Aged, 80 and over , Sepsis/microbiology , Sepsis/drug therapy , Anti-Bacterial Agents/therapeutic use , Fingers/surgery , Fingers/microbiology , Debridement
6.
Angew Chem Int Ed Engl ; 63(20): e202402878, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38466140

ABSTRACT

The classic chemical Mitsunobu reaction suffers from the need of excess alcohol activation reagents and the generation of significant by-products. Efforts to overcome these limitations have resulted in numerous creative solutions, but the substrate scope of these catalytic processes remains limited. Here we report an electrochemical Mitsunobu-type reaction, which features azo-free alcohol activation and broad substrate scope. This user-friendly technology allows a vast collection of heterocycles as the nucleophile, which can couple with a series of chiral cyclic and acyclic alcohols in moderate to high yields and excellent ee's. This practical reaction is scalable, chemoselective, uses simple Electrasyn setup with inexpensive electrodes and requires no precaution to exclude air and moisture. The synthetic utility is further demonstrated on the structural modification of diverse bioactive natural products and pharmaceutical derivatives and its straightforward application in a multiple-step synthesis of a drug candidate.

7.
ACS Nano ; 18(12): 9031-9042, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38470458

ABSTRACT

Cuproptosis has drawn enormous attention in antitumor material fields; however, the responsive activation of cuproptosis against tumors using nanomaterials with high atom utilization is still challenging. Herein, a copper-based nanoplatform consisting of acid-degradable copper hydride (CuH) nanoparticles was developed via a microfluidic synthesis. After coating with tumor-targeting hyaluronic acid (HA), the nanoplatform denoted as HA-CuH-PVP (HCP) shows conspicuous damage toward tumor cells by generating Cu+ and hydrogen (H2) simultaneously. Cu+ can induce apoptosis by relying on Fenton-like reactions and lead to cuproptosis by causing mitochondrial protein aggregation. Besides, the existence of H2 can enhance both cell death types by causing mitochondrial dysfunction and intracellular redox homeostatic disorders. In vivo experimental results further exhibit the desirable potential of HCP for killing tumor cells and inhibiting lung metastases, which will broaden the horizons of designing copper-based materials triggering apoptosis and cuproptosis for better antitumor efficacy.


Subject(s)
Copper , Nanoparticles , Microfluidics , Apoptosis , Hyaluronic Acid , Hydrogen
8.
Nanomicro Lett ; 16(1): 136, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411773

ABSTRACT

Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction. Herein, we present an ingenious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO2 sensing. We found that the single Pt sites on the MoS2 surface can induce easier volatilization of adjacent S species to activate the whole inert S plane. Reversely, the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms, thus creating a combined system involving S vacancy-assisted single Pt sites (Pt-Vs) to synergistically improve the adsorption ability of SO2 gas molecules. Furthermore, in situ Raman, ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS2 supports in SO2 gas atmosphere. Equipped with wireless-sensing modules, the final Pt1-MoS2-def sensors array can further realize real-time monitoring of SO2 levels and cloud-data storage for plant growth. Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.

9.
Article in English | MEDLINE | ID: mdl-38223235

ABSTRACT

Background: Breast cancer and thyroid cancer are two prevalent malignancies in women, and a potential association between the two diseases has been suggested. Methods: This retrospective case-control study was conducted involving 97 patients with breast cancer and thyroid cancer (BC-TC group) and 97 age-matched patients with breast cancer alone (BC group). Thyroid hormone levels, including triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4) and thyroid-stimulating hormone (TSH), were analyzed in healthy controls, BC patients, and BC-TC patients. Results: BC-TC patients exhibited a higher rate of estrogen receptor (ER) and progesterone receptor (PR) positivity compared to BC patients. Serum T3 levels were significantly decreased in BC and BC-TC patients compared to healthy controls. However, there was no significant difference in T3 levels between BC and BC-TC patients. Serum TSH levels were significantly higher in BC-TC patients compared to BC patients. Conclusion: ER positivity, PR positivity, and serum TSH levels greater than 4.45 mU/L were independent risk factors for primary thyroid cancer in breast cancer patients.

10.
Environ Microbiol Rep ; 16(1): e13222, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151778

ABSTRACT

Understanding microbial migration and survival mechanisms in dust events (DEs) can elucidate genetic and metabolic exchange between environments and help predict the atmospheric pathways of ecological and health-related microbial stressors. Dust-borne microbial communities have been previously characterized, but the impact and interactions between potentially active bacteria within transported communities remain limited. Here, we analysed samples collected during DEs in Israel, using amplicon sequencing of the 16S rRNA genes and transcripts. Different air trajectories and wind speeds were associated not only with the genomic microbial community composition variations but also with specific 16S rRNA bacterial transcripts. Potentially active dust-borne bacteria exhibited positive interactions, including carbon and nitrogen cycling, biotransformation of heavy metals, degradation of organic compounds, biofilm formation, and the presence of pathogenic taxa. This study provides insights into the potential interactive relationships and survival strategies of microorganisms within the extreme dust environment.


Subject(s)
Dust , Microbiota , Dust/analysis , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Microbiota/genetics
11.
Heliyon ; 9(12): e22718, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058452

ABSTRACT

This study employed network pharmacology, molecular docking technology, and modern pharmacological research methods to explore the pre-protective effect and underlying mechanism, Sanwei sandalwood decoction, against Adriamycin-induced Chronic Heart Failure, with a particular focus on the involvement of aquaporins. Additionally, the study highlighted aquaporins as a significant factor, affecting processes such as cell proliferation and response to reactive oxygen species. The results of in vivo experiments demonstrated that the administration of Sanwei sandalwood decoction in rats with chronic heart failure led to an enhancement in the ejection fraction and improved heart ejection function. Additionally, the decoction significantly reduced the serum levels of Creatine Kinase, Creatine Kinase-MB, and N-terminal pro-B-type natriuretic peptide. Furthermore, the relative expression of Aquarporin-1, 4, and 7mRNAs and proteins in the hearts of rats with chronic heart failure was down-regulated upon treatment. Overall, Sanwei sandalwood decoction can have an effective cardioprotective effect in preventing Adriamycin-induced Chronic Heart Failure in rats.

12.
Cell Transplant ; 32: 9636897231219830, 2023.
Article in English | MEDLINE | ID: mdl-38102784

ABSTRACT

Extracellular vesicles (EVs) from antler reserve mesenchymal (RM) cells play an important role in the paracrine regulation during rapid growth of antler without forming a tumor; therefore, RM-EVs become novel materials for anti-tumor studies, such as osteosarcoma treatment. However, the problem of low production of RM-EVs in traditional 2D culture limits its mechanism research and application. In this study, we established an optimal 3D culture system for antler RM cells to produce EVs (3D-RM-EVs). Morphology and property of harvested 3D-RM-EVs were normal compared with EVs from conventional 2D culture, and the miRNA profile in them was basically the same through transcriptome sequencing analysis. Based on the same number of RM cells, the volume of the culture medium collected by 3D cultural system concentrated nearly 30 times, making it more convenient for subsequent purification. In addition, EVs were harvested 30 times in 3D cultural system, greatly increasing the total amount of EVs (harvested a total of 2-3 times in 2D culture). Although 3D-RM-EVs had a limited inhibitory effect on the proliferation of K7M2 cells, the inhibition effect of 3D-RM-EVs loaded drugs (Ifosfamide + Etoposide) were more significant than that of positive drug group alone (P < 0.05). Furthermore, in vivo studies showed that 3D-RM-EVs loaded drugs (Ifosfamide + Etoposide) had the most significant tumor inhibition effect, with decreased tumor size, and could slow down body weight loss compared with Ifosfamide + Etoposide (IFO + ET) group. These results demonstrated that 3D-RM-EVs were efficiently prepared from antler RM cells and were effective as drug vehicles for the treatment of osteosarcoma.


Subject(s)
Antlers , Bone Neoplasms , Extracellular Vesicles , Mesenchymal Stem Cells , Osteosarcoma , Animals , Humans , Etoposide , Ifosfamide , Osteosarcoma/drug therapy , Bone Neoplasms/drug therapy
13.
Front Microbiol ; 14: 1236749, 2023.
Article in English | MEDLINE | ID: mdl-37928676

ABSTRACT

Objective: To investigate the effects of Sanwei sandalwood decoction on improving function of the intestinal flora in doxorubicin-induced heart failure in rats. Materials and methods: Thirty Sprague-Dawley rats were screened and randomly assigned into a blank group, a model group, and a Sanwei sandalwood decoction group (treatment group). The rat model of heart failure was prepared and established in the latter two groups. After successful model establishment, the treatment group received Sanwei sandalwood decoction by continuous gavage at 2 g/kg, once daily for 4 weeks. The other groups were given an equivalent volume of saline. After the final dose, fecal samples were collected from each group and analyzed by macrogenomics and nontargeted metabolomics to characterize the intestinal flora and associated metabolites. Results: The composition of gut microbiota was significantly different between the three groups. There were 778,808 common genes between the blank and model groups, while 49,315 genes were lost and 521,008 were gained in the model group relative to the blank group. At the phylum level, all groups of rat fecal samples were dominated by Firmicutes, Bacteroidota, Actinobacteria, and Proteobacteria. At the genus level, the microbial community composition in all experimental groups of rat fecal samples was dominated by Lactobacillus, Bifidobacterium, Limosilactobacillus, Allobaculum, Prevotella, and Ligilactobacillus spp. Interestingly, cluster analysis was performed on the top 30 KEGG ontology (KO) terms displaying significant differences in relative abundance in the rat fecal microbiome among experimental groups. The relative frequency of posttranslational modification, coenzyme transport and metabolism, cell wall, membrane, and envelope biogenesis in the eggNOG and CAZy databases. In the nontargeted metabolomics, the group principal component analysis revealed that the groups were well distinguished from one another. The different metabolites were screened with VIP >1, and the KEGG different metabolite classification and enrichment analysis revealed that there includes 15 metabolites pathway, including loxoprofen, conifery-l-acetate, trichilin A, and others. The arachidonic acid pathway also accounted for a significant portion of the KEGG pathway classification analysis. Conclusion: Sanwei sandalwood decoction positively affects the intestinal microbial environment of rats with heart failure, improving the gut dysbiosis that is caused by the condition. This treatment intervention inhibits the growth of pathogenic bacteria and promotes the growth of beneficial species.

14.
Ying Yong Sheng Tai Xue Bao ; 34(11): 2947-2957, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37997405

ABSTRACT

To clarify the alleviation effect of exogenous melatonin (MT) on Agropyron mongolicum under drought stress, we examined the response of A. mongolicum 'Yanchi' seedlings to simulated drought stress with polyethylene glycol 6000 (PEG-6000), by investigating the effects of exogenous addition of different concentrations (0, 1, 10, 50, 100, 150 and 200 mg·L-1) of MT on seedlings growth and physiological characteristics under drought stress. The results showed that drought stress significantly inhibited the growth of A. mongolicum seedlings, and that exogenous addition of different concentrations of MT could alleviate the growth inhibition caused by drought stress, with the strongest mitigation effect observed at MT concentration of 100 mg·L-1. Compared with the drought stress treatment alone, exogenous addition of 100 mg·L-1 MT under drought stress increased plant height, aboveground dry weight, and leaf relative water content by 58.2%, 121.2% and 48.1%. The contents of chlorophyll a, chlorophyll b, carotenoids increased by 48.7%, 80.8% and 38.3%, superoxide dismutase, peroxidase and root activity increased by 12.6%, 33.9% and 39.1%, and the contents of ascorbic acid and glutathione increased by 19.5% and 18.3%, respectively. The contents of proline, soluble sugar and soluble protein were increased by 16.2%, 32.6% and 14.3%, while that of malondialdehyde, hydrogen peroxide and superoxide anion radical were decreased by 45.8%, 65.8% and 30.8%, respectively. In summary, exogenous addition of 100 mg·L-1 MT could improve drought tolerance of A. mongolicum seedlings by promoting growth, enhancing antioxidant capacity, increasing the content of osmoregulation substances, inhibiting the excessive production of reactive oxygen, and reducing membrane peroxide level.


Subject(s)
Agropyron , Melatonin , Melatonin/pharmacology , Seedlings , Agropyron/metabolism , Droughts , Chlorophyll A/metabolism , Stress, Physiological , Antioxidants/metabolism , Superoxides/metabolism , Superoxides/pharmacology
15.
Sensors (Basel) ; 23(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37836883

ABSTRACT

Outliers can be generated in the power system due to aging system equipment, faulty sensors, incorrect line connections, etc. The existence of these outliers will pose a threat to the safe operation of the power system, reduce the quality of the data, affect the completeness and accuracy of the data, and thus affect the monitoring analysis and control of the power system. Therefore, timely identification and treatment of outliers are essential to ensure stable and reliable operation of the power system. In this paper, we consider the problem of detecting and localizing outliers in power systems. The paper proposes a Minorization-Maximization (MM) algorithm for outlier detection and localization and an estimation of unknown parameters of the Gaussian mixture model (GMM). To verify the performance of the method, we conduct simulation experiments by simulating different test scenarios in the IEEE 14-bus system. Numerical examples show that in the presence of outliers, the MM algorithm can detect outliers better than the traditional algorithm and can accurately locate outliers with a probability of more than 95%. Therefore, the algorithm provides an effective method for the handling of outliers in the power system, which helps to improve the monitoring analyzing and controlling ability of the power system and to ensure the stable and reliable operation of the power system.

16.
J Inflamm Res ; 16: 4733-4749, 2023.
Article in English | MEDLINE | ID: mdl-37872956

ABSTRACT

Purpose: This study aimed to analyze the hub genes of heart failure with reduced ejection fraction (HFrEF) treated with Empagliflozin using RNA sequencing (RNA-seq) and bioinformatics methods, including machine learning. Methods: From February 2021 to February 2023, nine patients with HFrEF were enrolled from our hospital's cardiovascular department. In addition to routine drug treatment, these patients received 10 mg of Empagliflozin once daily for two months. Efficacy was assessed and RNA-seq was performed on peripheral blood before and after treatment with empagliflozin. HFrEF-related hub genes were identified through bioinformatics analyses including differential gene expression analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, immune infiltration analysis, machine learning, immune cell correlation analysis and clinical indicator correlation analysis. Results: The nine patients included in this study completed a two-month treatment regimen, with an average age of 62.11 ± 6.36 years. By performing bioinformatics analysis on the transcriptome from the treatment groups, 42 differentially expressed genes were identified, with six being up-regulated and 36 being down-regulated (|log2FC|>1 and adj.pvalue<0.05). Immune infiltration analysis of these genes demonstrated a significant difference in the proportion of plasma between the pre-treatment and post-treatment groups (p<0.05). Two hub genes, GTF2IP14 and MTLN, were finally identified through machine learning. Further analysis of the correlation between the hub genes and immune cells suggested a negative correlation between GTF2IP14 and naive B cells, and a positive correlation between MTLN and regulatory T cells and resting memory CD4+ T cells (p<0.05). Conclusion: Through RNA-seq and bioinformatics analysis, this study identified GTF2IP14 and MTLN as the hub genes of HFrEF, and their mechanisms may be related to immune inflammatory responses and various immune cells.

17.
J Inflamm Res ; 16: 4679-4696, 2023.
Article in English | MEDLINE | ID: mdl-37872957

ABSTRACT

Purpose: Heart failure is a serious complication after acute myocardial infarction (AMI). It is crucial to investigate the mechanism of action of empagliflozin in the treatment of heart failure. Methods: A total of 20 wild type (WT) male C57BL6/J mice were used to establish a model of heart failure after myocardial infarction and randomly divided into 2 groups: treatment group and control group. The treatment group was treated with empagliflozin, and the control group was treated with placebo. After 8 weeks of treatment, mouse heart tissues were collected for next generation sequencing. Bioinformatics methods were used to screen the key genes. Finally, the correlation between clinical data and gene expression was analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of key genes. Results: A mouse model of heart failure was successfully constructed. By DEG analysis, a total of 740 DEGs in the treatment group vs the control group were obtained. Dendritic cells, granulocytes, follicular B, plasma cell, cDC1, cDC2, pDC and neutrophils were 8 different immune cells identified by immunoinfiltration analysis. Through WGCNA, the turquoise module with the highest correlation with the above differential immune cells was selected. One hundred and forty-two immune-related DEGs were obtained by taking intersection of the DEGs and the genes of the turquoise module. Col17a1 and Gria4 were finally screened out as key immune-related genes via PPI analysis and machine learning. Col17a1 was significantly up-regulated, while Gria4 was significantly down-regulated in the treatment group. At the same time, the expression level of Col17a1 was significantly correlated with left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS) and left ventricular internal dimension systole (LVIDs). Conclusion: Col17a1 and Gria4 are key immune-related genes of empagliflozin in the treatment of heart failure after myocardial infarction. This study provides a scientific basis for elucidating the mechanism of action of empagliflozin in treating heart failure after myocardial infarction.

18.
Cell Death Discov ; 9(1): 359, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770458

ABSTRACT

Pulmonary fibrosis (PF), a chronic interstitial lung disease, is characterized by over-abundant deposition of extracellular matrix consisting mainly of collagen I. In previous studies, we demonstrated that deer antler stem cells (AnSCs), a novel type of adult stem cell, are capable of significantly down-regulating collagen formation in different organs and tissues and speculated that they could effectively treat PF via reducing collagen deposition in the lung tissue. In the present study, we found that administration of AnSCs improved the survival rate of PF mice and reduced lung fibrosis, collagen deposition and myofibroblast differentiation. The effects of AnSC treatment were significantly better than the positive control (adipose-derived stem cells). Interestingly, AnSC-Exos were almost equally effective as AnSCs in treating PF, suggesting that the effects of AnSCs on reduction of PF may be mainly through a paracrine mechanism. Further, AnSC-Exos reduced the number of M2 macrophages, a type of macrophage that secrets pro-fibrotic factors to accelerate fibrotic progression, in the lung tissues. In vitro experiments showed that the effects of AnSC-Exos on macrophage modulation were likely achieved via inhibition of the recruitment of circulating monocyte-derived macrophages (reducing the number of macrophages), rather than via inhibition of M2 polarization of macrophages. Inhibition of macrophage recruitment by AnSCs may be achieved indirectly via inhibiting CCL7 expression in fibroblasts; both let-7b and let-7a were highly enriched in AnSC-Exos and may play a critical role in the inhibition of CCL7 expression of fibroblasts. Collectively, the use of antler stem cells or their exosomes opens up a novel strategy for PF treatment in the clinical setting.

19.
Adv Mater ; 35(48): e2306577, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37572373

ABSTRACT

Sodium ion batteries (SIBs) suffer from large electrode volume change and sluggish redox kinetics for the relatively large ionic radius of sodium ions, raising a significant challenge to improve their long-term cyclability and rate capacity. Here, it is proposed to apply 2D amorphous iron selenide sulfide nanosheets (a-FeSeS NSs) as an anode material for SIBs and demonstrate that they exhibit remarkable rate capability of 528.7 mAh g-1 at 1 A g-1 and long-life cycle (10 000 cycles) performance (300.4 mAh g-1 ). This performance is much more superior to that of the previously reported Fe-based anode materials, which is attributed to their amorphous structure that alleviates volume expansion of electrode, 2D nature that facilitates electrons/ions transfer, and the S/Se double anions that offer more reaction sites and stabilize the amorphous structure. Such a 2D amorphous strategy provides a fertile platform for structural engineering of other electrode materials, making a more secure energy prospect closer to a reality.

20.
J Exp Zool A Ecol Integr Physiol ; 339(10): 1017-1025, 2023 12.
Article in English | MEDLINE | ID: mdl-37635631

ABSTRACT

Antlerogenic periosteum (AP) is the unique tissue type that gives rise to antlers and their antecedents, the pedicles. Deer antlers are the only mammalian organ that can fully regenerate. Efficient investigation of the mechanism of antler formation and regeneration requires year-round availability of AP, but naturally AP can only be obtained less than two months in a year. In the present study we took the cryopreservation approach to store the sampled AP in ultra-low temperature to overcome the limited period of availability. First, we evaluated the suitability of vitrification and cell cryopreservation method for cryopreservation of AP, cell migration status of the AP tissue pieces confirmed that vitrification methods did not work as the only few AP cells migrated out, whereas migrated cell numbers in the cell-cryo group (conventional method for cryopreservation of cells) were comparable to those of the fresh AP group. To further evaluate the suitability of cell cryopreservation method for AP tissue, AP samples were allocated into three groups based on the different ratios of cryopreservation reagents (dimethyl sulfoxide [DMSO], dulbecco's modified eagle's medium [DMEM] and fetal bovine serum [FBS]): AP-Cell-1 (1:4:5), AP-Cell-2 (1:2:7) and AP-Cell-3 (1:0:9), the results showed that migrated cell number were again comparable to the fresh AP group. There was no significant difference between the cell-cryo groups (AP-Cell-1 and AP-Cell-3) and the fresh group: (1) in viability (p > 0.05) through trypan blue staining (91.2%, 90.8%, and 92.4%, respectively); (2) in the attachment day, and all on Day 5 after cell seeding; (3) in cell proliferation rate (p > 0.05) through Cell Counting kit 8 (CCK8) measurement; and (4) in number of the formed clones (Clonogenicity). In the in vivo trials, there was no visible difference in temporal differentiation sequence of the formed xenogeneic antlers between the fresh AP and cryopreserved AP (AP-Cell-1 and AP-Cell-3). Overall, we found that the AP tissue was well cryopreserved just using the conventional freezing and thawing methods for cells, and their viability and developmental potential comparable to the fresh AP both in vitro and in vivo. The long-term preservation of the AP tissue is of great significance for the study of the periosteum biology in general and the mechanism underlying xenogeneic generation and regeneration of deer antlers in specific.


Subject(s)
Antlers , Deer , Animals , Deer/physiology , Periosteum/physiology , Regeneration , Cryopreservation/veterinary , Antlers/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...