Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(2)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36832587

ABSTRACT

Natural language processing (NLP) models based on deep neural networks (DNNs) are vulnerable to backdoor attacks. Existing backdoor defense methods have limited effectiveness and coverage scenarios. We propose a textual backdoor defense method based on deep feature classification. The method includes deep feature extraction and classifier construction. The method exploits the distinguishability of deep features of poisoned data and benign data. Backdoor defense is implemented in both offline and online scenarios. We conducted defense experiments on two datasets and two models for a variety of backdoor attacks. The experimental results demonstrate the effectiveness of this defense approach and outperform the baseline defense method.

2.
Sensors (Basel) ; 22(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35408275

ABSTRACT

The Internet of Things (IoT) is promising to transform a wide range of fields. However, the open nature of IoT makes it exposed to cybersecurity threats, among which identity spoofing is a typical example. Physical layer authentication, which identifies IoT devices based on the physical layer characteristics of signals, serves as an effective way to counteract identity spoofing. In this paper, we propose a deep learning-based framework for the open-set authentication of IoT devices. Specifically, additive angular margin softmax (AAMSoftmax) was utilized to enhance the discriminability of learned features and a modified OpenMAX classifier was employed to adaptively identify authorized devices and distinguish unauthorized ones. The experimental results for both simulated data and real ADS-B (Automatic Dependent Surveillance-Broadcast) data indicate that our framework achieved superior performance compared to current approaches, especially when the number of devices used for training is limited.


Subject(s)
Internet of Things , Computer Security
3.
Sensors (Basel) ; 18(5)2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29702626

ABSTRACT

Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.

SELECTION OF CITATIONS
SEARCH DETAIL
...