Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(10): e202318516, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38241198

ABSTRACT

In this work, full-color and stable white organic afterglow materials with outstanding water, organic solvents, and temperature resistances have been developed for the first time by embedding the selected polycyclic aromatic hydrocarbons into melamine-formaldehyde polymer via solution polymerization. The afterglow quantum yields and lifetimes of the resulting polymer films were up to 22.7 % and 4.83 s, respectively, under ambient conditions. For the coronene-doped sample, its afterglow color could be linearly tuned between yellow and blue by adjusting the temperature, and it could still emit an intense blue afterglow with a lifetime of 0.68 s at 440 K. Moreover, the films showed a bright and stable white afterglow at 370 K with a lifetime of 2.80 s and maintained an excellent afterglow performance after soaking in water and organic solvents for more than 150 days. In addition, the application potential of the polymer films in information encryption and anti-counterfeiting was also demonstrated.

2.
ACS Appl Mater Interfaces ; 15(33): 39896-39904, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37555378

ABSTRACT

Developing polymer-based organic afterglow materials with switchable ultralong organic phosphorescence (UOP) that are insensitive to moisture remains challenging. Herein, two organic luminogens, BBCC and BBCS, were synthesized by attaching 7H-benzo[c]carbazole (BBC) to benzophenone and diphenyl sulfone. These two emitters were employed as guest molecules and doped into epoxy polymers (EPs), which were constructed by in situ polymerization to achieve polymer materials BBCC-EP and BBCS-EP. It was found that BBCC-EP and BBCS-EP films exhibited significant photoactivated UOP properties. After light irradiation, they could produce a conspicuous organic afterglow with phosphorescence quantum yields and lifetimes up to 5.35% and 1.91 s, respectively. Meanwhile, BBCS-EP also presented photochromic characteristics. Upon thermal annealing, the UOP could be turned off, and the polymer films recovered to their pristine state, showing switchable organic afterglow. In addition, BBCC-EP and BBCS-EP displayed excellent water resistance and still produced obvious UOP after soaking in water for 4 weeks. Inspired by the unique photoactivated UOP and photochromic properties, BBCC and BBCS in the mixtures of diglycidyl ether of bisphenol A (DGEBA) and 1,3-propanediamine were employed as security inks for light-controlled multilevel anticounterfeiting. This work may provide helpful guidance for developing photostimuli-responsive polymer-based organic afterglow materials, especially those with stable UOP under ambient conditions.

3.
ACS Appl Mater Interfaces ; 15(25): 30717-30726, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37335904

ABSTRACT

The development of new polymer-based room-temperature phosphorescence materials is of great significance. By a special molecule design and a set of feasible property-enhancing strategies, coumarin derivatives (CMDs, Ma-Mf) were doped into polyvinyl alcohol (PVA), polyacrylamide (PAM), corn starch, and polyacrylonitrile (PAN) as information anti-counterfeiting. CMDs-doped PVA and CMDs-doped corn starch films showed long-lived phosphorescence emissions up to 1246 ms (Ma-PVA) and 697 ms (Ma-corn starch), reaching over 10 s afterglow under naked eye observation under ambient conditions. Significantly, CMDs-doped PAM films can display long-lived phosphorescence emissions in a wide temperature range (100-430 K). For example, the Me-PAM film has a phosphorescence lifetime of 16 ms at 430 K. The use of PAM with the strong polarity and rigidity has expanded the temperature range of long-life polymer-based phosphorescent materials. The present long-lived phosphorescent systems provide the possibility for developing new polymer-based organic afterglow materials with robust phosphorescence.

SELECTION OF CITATIONS
SEARCH DETAIL
...