Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 529
Filter
1.
Oecologia ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829403

ABSTRACT

Knowledge of the effect of harsh weather on the phenotypic traits of organisms is essential for understanding the environmental influence on phenotype evolution and holds implications for predicting how species respond to current climate change. For many birds, harsh weather in winter often imposes a strong selective effect on their survival, and only the individuals with certain phenotypes may survive. However, whether the selective effect on phenotype varies with winter weather conditions has been poorly investigated. Here, we explored the selective effect of winter weather on black-throated tit's (Aegithalos concinnus) morphological traits under winters with and without severe snowstorms. We found that for males, the sizes of their bills, heads and wings significantly affected their overwinter survival, but the effects varied with winter conditions. In relatively benign winters, males with smaller bill depths, smaller bill surface areas, and greater head lengths survived better; whereas, in winters with severe snowstorms, a reverse pattern was found. This phenomenon was likely driven by selection pressures from heat retention and foraging requirements, with their relative importance depending on winter conditions. Additionally, wing length was positively correlated with male survival and the relationship was stronger in harsher winters, which was probably due to longer wings' higher flight efficiency in adverse weather. By contrast, we found no correlation between morphological traits and survival in females. These results suggest a sex-specific and condition-dependent selective effect of environment on bird phenotypes, implying complicated interactions between different selection pressures and phenotype evolution.

2.
Neurochem Res ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864944

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease with a challenging treatment landscape, due to its complex pathogenesis and limited availability of clinical drugs. Ferroptosis, an iron-dependent form of programmed cell death (PCD), stands distinct from apoptosis, necrosis, autophagy, and other cell death mechanisms. Recent studies have increasingly highlighted the role of iron deposition, reactive oxygen species (ROS) accumulation, oxidative stress, as well as systemic Xc- and glutamate accumulation in the antioxidant system in the pathogenesis of amyotrophic lateral sclerosis. Therefore, targeting ferroptosis emerges as a promising strategy for amyotrophic lateral sclerosis treatment. This review introduces the regulatory mechanism of ferroptosis, the relationship between amyotrophic lateral sclerosis and ferroptosis, and the drugs used in the clinic, then discusses the current status of amyotrophic lateral sclerosis treatment, hoping to provide new directions and targets for its treatment.

3.
Nat Commun ; 15(1): 4703, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830868

ABSTRACT

Nuclear factor erythroid 2-related factor 2 (NRF2) hyperactivation has been established as an oncogenic driver in a variety of human cancers, including non-small cell lung cancer (NSCLC). However, despite massive efforts, no specific therapy is currently available to target NRF2 hyperactivation. Here, we identify peptidylprolyl isomerase A (PPIA) is required for NRF2 protein stability. Ablation of PPIA promotes NRF2 protein degradation and blocks NRF2-driven growth in NSCLC cells. Mechanistically, PPIA physically binds to NRF2 and blocks the access of ubiquitin/Kelch Like ECH Associated Protein 1 (KEAP1) to NRF2, thus preventing ubiquitin-mediated degradation. Our X-ray co-crystal structure reveals that PPIA directly interacts with a NRF2 interdomain linker via a trans-proline 174-harboring hydrophobic sequence. We further demonstrate that an FDA-approved drug, cyclosporin A (CsA), impairs the interaction of NRF2 with PPIA, inducing NRF2 ubiquitination and degradation. Interestingly, CsA interrupts glutamine metabolism mediated by the NRF2/KLF5/SLC1A5 pathway, consequently suppressing the growth of NRF2-hyperactivated NSCLC cells. CsA and a glutaminase inhibitor combination therapy significantly retard tumor progression in NSCLC patient-derived xenograft (PDX) models with NRF2 hyperactivation. Our study demonstrates that targeting NRF2 protein stability is an actionable therapeutic approach to treat NRF2-hyperactivated NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Kelch-Like ECH-Associated Protein 1 , Lung Neoplasms , NF-E2-Related Factor 2 , Protein Stability , Ubiquitination , NF-E2-Related Factor 2/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice , Cell Line, Tumor , Disease Progression , Proteolysis , Mice, Nude , Female , NIMA-Interacting Peptidylprolyl Isomerase
4.
Plant Biotechnol J ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715250

ABSTRACT

MicroRNA169 (miR169) has been implicated in multi-stress regulation in annual species such as Arabidopsis, maize and rice. However, there is a lack of experimental functional and mechanistic studies of miR169 in plants, especially in perennial species, and its impact on plant growth and development remains unexplored. Creeping bentgrass (Agrostis stolonifera L.) is a C3 cool-season perennial turfgrass of significant environmental and economic importance. In this study, we generated both miR169 overexpression and knockdown transgenic creeping bentgrass lines. We found that miR169 acts as a positive regulator in abiotic stress responses but is negatively associated with plant growth and development, playing multiple critical roles in the growth and environmental adaptation of creeping bentgrass. These roles include differentiated spatial hormone accumulation patterns associated with growth and stress accommodation, elevated antioxidant activity that alleviates oxidative damage induced by stress, ion-channelling membrane components for maintaining homeostasis under saline conditions, and potential cross-talks with stress-regulating transcription factors such as AsHsfA and AsWRKYs. Our results unravel the role of miR169 in modulating plant development and stress responses in perennial grass species. This underlines the potential of manipulating miR169 to generate crop cultivars with desirable traits to meet diverse agricultural demands.

5.
Psych J ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757253

ABSTRACT

Chronic stress alters reward sensitivity and contributes to anhedonia. Chemosensation is dominated by a hedonic dimension, but little is known about the association between chronic perceived stress and hedonic chemosensation in non-clinical populations. In the current study, 325 participants (201 females) completed a questionnaire-based survey measuring their chronic perceived stress (Perceived Stress Scale; PSS), chemosensory pleasure (Chemosensory Pleasure Scale; CPS), and olfactory metacognitive abilities (odor awareness, affective impact of odor, importance of olfaction). For females, higher PSS scores significantly predicted lower CPS scores, which is mediated by the positive odor awareness. Moreover, negative odor awareness was identified as a moderator underlying the relationship between PSS and CPS scores in females but not in males. For females, higher PSS predicted lower CPS for those with lower, but not for those with higher levels of negative odor awareness. These results show that the link between chronic perceived stress and chemosensory anhedonia is pronounced in females, with olfactory perception playing a key role. The current study provides insights into the understanding of stress-related anhedonia and into the development of effective treatments.

6.
Angew Chem Int Ed Engl ; : e202405781, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782734

ABSTRACT

Synthesis of bicyclic scaffolds has gained significant attention in drug discovery due to their potential to mimic benzene bioisosteres. Here, we present a mild and scalable Sc(OTf)3-catalyzed [3+2] cycloaddition of bicyclo[1.1.0]butanes (BCBs) with ynamides, yielding a diverse array of polysubstituted 2-amino-bicyclo[2.1.1]hexenes in good to excellent yields. These products offer valuable starting materials for the construction of novel functionalized bicyclo[1.1.0]butanes. Preliminary mechanistic studies indicate that the reaction involves a nucleophilic addition of ynamides to bicyclo[1.1.0]butanes, followed by an intramolecular cyclization of in situ generated enolate and keteniminium ion. We expect that these findings will encourage utilization of complex bioisosteres and foster further investigation into BCB-based cycloaddition chemistry.

7.
Food Chem ; 453: 139633, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781896

ABSTRACT

Smilax glabra Roxb. (SGR) is known for its high nutritional and therapeutic value. However, the frequent appearance of counterfeit products causes confusion and inconsistent quality among SGR varieties. Herein, this study collected the proportion of SGR adulteration and used high-performance liquid chromatography (HPLC) to measure the astilbin content of SGR. Then Fourier-transform near-infrared (FT-NIR) technology, combined with multivariate intelligent algorithms, was used to establish partial least squares regression quantitative models for detecting SGR adulteration and measuring astilbin content, respectively. The method conducted a quantitative analysis of dual indicators through single-spectrum data acquisition (QADS) to comprehensively evaluate the authenticity and superiority of SGR. The coefficients of determination (R2) for both the calibration and prediction sets exceeded 0.96, which successfully leverages FT-NIR combined with multivariate intelligent algorithms to considerably enhance the accuracy and reliability of quantitative models. Overall, this research holds substantial value in the comprehensive quality evaluation in functional health foods.


Subject(s)
Algorithms , Smilax , Spectroscopy, Near-Infrared , Smilax/chemistry , Spectroscopy, Near-Infrared/methods , Chromatography, High Pressure Liquid , Quality Control , Spectroscopy, Fourier Transform Infrared , Plant Extracts/chemistry , Plant Extracts/analysis , Least-Squares Analysis
8.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2478-2488, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812147

ABSTRACT

In order to analyze the similarities and differences of chemical compositions between the roots and stems and leaves of Isodon japonicus(IJ), this study utilized UPLC-Q-TOF-MS technology to systematically characterize its chemical compositions, analyzed and identified the structure of its main compounds, and established a method for simultaneous determination of its content by refe-rence substance. A total of 34 major compounds in IJ, including 14 reference compounds, were identified or predicted online. Moreover, an UPLC-UV content determination method was developed for 11 compounds [danshensu, caffeic acid, vicenin-2,(1S,2S)-globoidnan B, rutin,(+)-rabdosiin,(-)-rabdosiin,(1S,2S)-rabdosiin, shimobashiric acid C, rosmarinic acid, and pedalitin]. The method exhibited excellent separation, stability, and repeatability, with a wide linear range(0.10-520.00 µg·mL~(-1)) and high linearity(R~2>0.999). The average recovery rates ranged from 94.72% to 104.2%. The principal component analysis(PCA) demonstrated a clear difference between the roots and stems and leaves of IJ, indicating good separation by cluster. Furthermore, the orthogonal partial least squares discriminant analysis(OPLS-DA) model was employed, and six main differentially identified compounds were identified: rosmarinic acid, shimobashiric acid C, epinodosin, pedalitin, rutin, and(1S,2S)-rabdosiin. In summary, this study established a strategy and method for distinguishing different parts of IJ, providing a valuable tool for quality control of IJ and a basis for the ratio-nal utilization and sustainable development of IJ.


Subject(s)
Chemometrics , Drugs, Chinese Herbal , Isodon , Mass Spectrometry , Plant Leaves , Chromatography, High Pressure Liquid/methods , Isodon/chemistry , Mass Spectrometry/methods , Chemometrics/methods , Plant Leaves/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Plant Roots/chemistry , Plant Stems/chemistry
9.
ACS Nano ; 18(21): 13885-13898, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38757565

ABSTRACT

Severe acute pancreatitis (SAP), characterized by pancreatic acinar cell death, currently lacks effective targeted therapies. Ellagic acid (EA), rich in pomegranate, shows promising anti-inflammatory and antioxidant effects in SAP treatment. However, the roles of other forms of EA, such as plant extracellular vesicles (EVs) extracted from pomegranate, and Urolithin A (UA), converted from EA through gut microbiota metabolism in vivo, have not been definitively elucidated. Our research aimed to compare the effects of pomegranate-derived EVs (P-EVs) and UA in the treatment of SAP to screen an effective formulation and to explore its mechanisms in protecting acinar cells in SAP. By comparing the protective effects of P-EVs and UA on injured acinar cells, UA showed superior therapeutic effects than P-EVs. Subsequently, we further discussed the mechanism of UA in alleviating SAP inflammation. In vivo animal experiments found that UA could not only improve the inflammatory environment of pancreatic tissue and peripheral blood circulation in SAP mice but also revealed that the mechanism of UA in improving SAP might be related to mitochondria and endoplasmic reticulum (ER) through the results including pancreatic tissue transcriptomics and transmission electron microscopy. Further research found that UA could regulate ER-mitochondrial calcium channels and reduce pancreatic tissue necroptosis. In vitro experiments of mouse pancreatic organoids and acinar cells also confirmed that UA could improve pancreatic inflammation by regulating the ER-mitochondrial calcium channel and necroptosis pathway proteins. This study not only explored the therapeutic effect of plant EVs on SAP but also revealed that UA could alleviate SAP by regulating ER-mitochondrial calcium channel and reducing acinar cell necroptosis, providing insights into the pathogenesis and potential treatment of SAP.


Subject(s)
Coumarins , Endoplasmic Reticulum , Mitochondria , Pancreatitis , Animals , Coumarins/pharmacology , Coumarins/chemistry , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Mice , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Calcium Channels/metabolism , Male , Mice, Inbred C57BL , Pomegranate/chemistry , Acinar Cells/drug effects , Acinar Cells/metabolism , Acinar Cells/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry
10.
MedComm (2020) ; 5(5): e553, 2024 May.
Article in English | MEDLINE | ID: mdl-38737469

ABSTRACT

The generation of chimeric antigen receptor-modified natural killer (CAR-NK) cells using induced pluripotent stem cells (iPSCs) has emerged as one of the paradigms for manufacturing off-the-shelf universal immunotherapy. However, there are still some challenges in enhancing the potency, safety, and multiple actions of CAR-NK cells. Here, iPSCs were site-specifically integrated at the ribosomal DNA (rDNA) locus with interleukin 24 (IL24) and CD19-specific chimeric antigen receptor (CAR19), and successfully differentiated into iPSC-derived NK (iNK) cells, followed by expansion using magnetic beads in vitro. Compared with the CAR19-iNK cells, IL24 armored CAR19-iNK (CAR19-IL24-iNK) cells showed higher cytotoxic capacity and amplification ability in vitro and inhibited tumor progression more effectively with better survival in a B-cell acute lymphoblastic leukaemia (B-ALL) (Nalm-6 (Luc1))-bearing mouse model. Interestingly, RNA-sequencing analysis showed that IL24 may enhance iNK cell function through nuclear factor kappa B (NFκB) pathway-related genes while exerting a direct effect on tumor cells. This study proved the feasibility and potential of combining IL24 with CAR-iNK cell therapy, suggesting a novel and promising off-the-shelf immunotherapy strategy.

11.
CNS Drugs ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573471

ABSTRACT

BACKGROUND: Percutaneous endoscopic transforaminal discectomy (PETD) is an effective method for treating lumbar disc herniation, and is typically performed under local anesthesia. However, inadequate analgesia during the procedure remains a concern, prompting the search for a medication that can provide optimal pain control with minimal impact on the respiratory and circulatory systems. OBJECTIVES: The aim of this study was to observe the effects of different doses of esketamine combined with dexmedetomidine on reducing visual analog scale (VAS) scores during surgical interventions. METHODS: One hundred two patients who underwent PETD were randomly divided into a control group (group C: normal saline + dexmedetomidine), an E1 group (0.1 mg kg-1 esketamine + dexmedetomidine), and an E2 group (0.2 mg kg-1 esketamine + dexmedetomidine). The primary outcome was the maximum visual analogue scale (VAS) (score: 0 = no pain and 10 = worst pain) at six time points. The secondary outcomes included the Assessment of Alertness/Sedation Scale (OAA/S) score and mean arterial pressure (BP), heart rate (HR), respiratory rate (RR), and oxygen saturation (SpO2) at 11 time points. The incidence of adverse reactions during and 24 h after the operation and patient satisfaction with the anesthesia were also recorded. RESULTS: Compared with those in group C, the VAS scores of patients in groups E1 and E2 were lower at T6, T7, and T9 (P < 0.05). From T4 to T10, the OAA/S scores of the E1 and E2 groups were both lower than those of group C (P < 0.05), and at the T4-T6 time points, the OAA/S score of the E2 group was lower than that of group E1 (P < 0.05). At T4 and T5, the HR and BP of patients in groups E1 and E2 were greater than those in group C (P < 0.05). Compared with those in group C, the incidences of intraoperative illusion, floating sensation, postoperative dizziness, and hyperalgesia in groups E1 and E2 were significantly greater (P < 0.01). There was no significant difference in patient RR, SpO2, or postoperative satisfaction with anesthesia among the three groups (P > 0.05). CONCLUSION: The combination of esketamine and dexmedetomidine can reduce VAS scores during certain stages of this type of surgery; it has minimal impact on respiration and circulation. However, this approach is associated with increased incidences of postoperative dizziness and psychiatric side effects, which may also affect patients' compliance with surgical instructions from medical staff. Patient satisfaction was not greater with dexmedetomidine combined with esketamine than with dexmedetomidine alone. TRIAL REGISTRATION: http://www.chictr.org.cn . Identifier: ChiCTR2300068206. Date of registration: 10 February 2023.

12.
BMC Genomics ; 25(1): 333, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570739

ABSTRACT

BACKGROUND: The closed poultry houses integrated with a longitudinal water curtain cooling system (LWCCS) are widely used in modern poultry production. This study showed the variations in environmental conditions in closed houses integrated with a longitudinal water curtain cooling system. We evaluated the influence of different environmental conditions on duck growth performance and the transcriptome changes of immune organs, including the bursa of Fabricius and the spleen. RESULT: This study investigated the slaughter indicators and immune organ transcriptomes of 52-day-old Cherry Valley ducks by analyzing the LWCC at different locations (water curtain end, middle position, and fan cooling end). The results showed that the cooling effect of the LWCCS was more evident from 10:00 a.m. -14:00. And from the water curtain end to the fan cooling end, the hourly average temperature differently decreased by 0.310℃, 0.450℃, 0.480℃, 0.520℃, and 0.410℃, respectively (P < 0.05). The daily and hourly average relative humidity decreased from the water curtain end to the fan cooling end, dropping by 7.500% and 8.200%, respectively (P < 0.01). We also observed differences in production performance, such as dressing weight, half-eviscerated weight, skin fat rate, and percentage of abdominal fat (P < 0.01), which may have been caused by environmental conditions. RNA-sequencing (RNA-seq) revealed 211 and 279 differentially expressed genes (DEGs) in the ducks' bursa of Fabricius and spleen compared between the water curtain end and fan cooling end, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the two organs showed the DEGs were mainly enriched in cytokine-cytokine receptor interaction, integral component of membrane, Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway, etc. Our results implied that full-closed poultry houses integrated with LWCCS could potentially alter micro-environments (water curtain vs. fan cooling), resulting in ducks experiencing various stressful situations that eventually affect their immunity and production performance. CONCLUSION: In this study, our results indicated that uneven distributions of longitudinal environmental factors caused by LWCCS would affect the dressed weight, breast muscle weight, skin fat rate, and other product performance. Moreover, the expression of immune-related genes in the spleen and bursa of ducks could be affected by the LWCCS. This provides a new reference to optimize the use of LWCCS in conjunction with close duck houses in practical production.


Subject(s)
Ducks , Transcriptome , Animals , Ducks/genetics , Ducks/metabolism , Signal Transduction , Cytokines/genetics , Gene Expression Profiling
13.
Biochem Pharmacol ; 224: 116217, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641306

ABSTRACT

The Hippo pathway is a key regulator of tissue growth, organ size, and tumorigenesis. Activating the Hippo pathway by gene editing or pharmaceutical intervention has been proven to be a new therapeutic strategy for treatment of the Hippo pathway-dependent cancers. To now, a number of compounds that directly target the downstream effector proteins of Hippo pathway, including YAP and TEADs, have been disclosed, but very few Hippo pathway activators are reported. Here, we discovered a new class of Hippo pathway activator, YL-602, which inhibited CTGF expression in cells irrespective of cell density and the presence of serum. Mechanistically, YL-602 activates the Hippo pathway via MST1/2, which is different from known activators of Hippo pathway. In vitro, YL-602 significantly induced tumor cell apoptosis and inhibited colony formation of tumor cells. In vivo, oral administration of YL-602 substantially suppressed the growth of cancer cells by activation of Hippo pathway. Overall, YL-602 could be a promising lead compound, and deserves further investigation for its mechanism of action and therapeutic applications.


Subject(s)
Antineoplastic Agents , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Signal Transduction , Humans , Protein Serine-Threonine Kinases/metabolism , Animals , Antineoplastic Agents/pharmacology , Mice , Signal Transduction/drug effects , Signal Transduction/physiology , Mice, Nude , Cell Line, Tumor , Xenograft Model Antitumor Assays/methods , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Mice, Inbred BALB C , Apoptosis/drug effects , Female
14.
J Agric Food Chem ; 72(18): 10487-10496, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683727

ABSTRACT

The current study aimed to improve the acid resistance and thermostability of Bacillus velezensis α-amylase through site-directed mutagenesis, with a specific focus on its applicability to the feed industry. Four mutation sites, P546E, H572D, A614E, and K622E, were designed in the C domain of α-amylase, and three mutants, Mut1 (E), Mut2 (ED), and Mut3 (EDEE), were produced. The results showed that the specific activity of Mut3 was 50 U/mg higher than the original α-amylase (Ori) after incubation at 40 °C for 4 h. Compared to Ori, the acid resistance of Mut3 showed a twofold increase in specific activity at pH 2.0. Moreover, the results of preliminary feed hydrolysis were compared between Ori and Mut3 by designing three factors, three levels of orthogonal experiment for enzymatic hydrolysis time, feed quantity, and amount of amylase. It was observed that the enzymatic hydrolysis time and feed quantity showed an extremely significant difference (p < 0.01) in Mut3 compared to Ori. However, the amount of enzyme showed significant (p < 0.05) improvement in the enzymatic hydrolysis in Mut3 as compared to Ori. The study identified Mut3 as a promising candidate for the application of α-amylase in the feed industry.


Subject(s)
Bacillus , Bacterial Proteins , Mutagenesis, Site-Directed , alpha-Amylases , Acids/metabolism , Acids/chemistry , Acids/pharmacology , alpha-Amylases/genetics , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Animal Feed , Bacillus/enzymology , Bacillus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Enzyme Stability , Hot Temperature , Hydrogen-Ion Concentration , Hydrolysis , Kinetics
15.
Environ Res ; 252(Pt 2): 118829, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582424

ABSTRACT

Municipal wastewater treatment processes consume a significant amount of energy and generate substantial carbon emissions. However, organic matters existing in municipal wastewater hold the potential as a valuable carbon source. Activated sludge has the potential to capture and recover the organic matters, thereby enriching carbon sources and facilitating subsequent sludge anaerobic digestion as well as in line with the concept of sustainable development. Based on above, this study investigated the enrichment and recovery characteristics and mechanisms of activated sludge adsorption on carbon sources in municipal wastewater, while optimizing the recovery conditions. The results indicated that insoluble organic matters, as well as a fraction of dissolved organic matters, can be effective recovered within approximately 40 min. Specifically, 74.1% of insoluble organic matters and 25.8% of soluble organic matters were successfully captured by the activated sludge, resulting in a 5.0% increase in sludge organic matter content. Moreover, activated sludge demonstrated remarkable recovery of particulate organic matters across various particle sizes, particularly larger particles (>5 µm) with high protein content. Notably, the dissolved biodegradable organics such as tryptophan and tyrosine protein-like substances according to 3D-EEM and lipids, proteins/amino sugars, and carbohydrates according to FT-ICR MS can be effectively recovered. Finally, the study revealed that the recovery of organic matters from the wastewater by activated sludge followed the pseudo-second-order kinetics model, with surface binding, hydrogen bonding and interparticle diffusion in sludge flocs as the primary adsorption mechanisms. This approach had abroad application prospects for improving the profitability of wastewater treatment plants.


Subject(s)
Sewage , Waste Disposal, Fluid , Wastewater , Sewage/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Adsorption , Organic Chemicals/analysis
16.
Oncol Res ; 32(4): 753-768, 2024.
Article in English | MEDLINE | ID: mdl-38560563

ABSTRACT

Multiple myeloma (MM) is a hematologic malignancy notorious for its high relapse rate and development of drug resistance, in which cell adhesion-mediated drug resistance plays a critical role. This study integrated four RNA sequencing datasets (CoMMpass, GSE136337, GSE9782, and GSE2658) and focused on analyzing 1706 adhesion-related genes. Rigorous univariate Cox regression analysis identified 18 key prognosis-related genes, including KIF14, TROAP, FLNA, MSN, LGALS1, PECAM1, and ALCAM, which demonstrated the strongest associations with poor overall survival (OS) in MM patients. To comprehensively evaluate the impact of cell adhesion on MM prognosis, an adhesion-related risk score (ARRS) model was constructed using Lasso Cox regression analysis. The ARRS model emerged as an independent prognostic factor for predicting OS. Furthermore, our findings revealed that a heightened cell adhesion effect correlated with tumor resistance to DNA-damaging drugs, protein kinase inhibitors, and drugs targeting the PI3K/Akt/mTOR signaling pathway. Nevertheless, we identified promising drug candidates, such as tirofiban, pirenzepine, erlotinib, and bosutinib, which exhibit potential in reversing this resistance. In vitro, experiments employing NCIH929, RPMI8226, and AMO1 cell lines confirmed that MM cell lines with high ARRS exhibited poor sensitivity to the aforementioned candidate drugs. By employing siRNA-mediated knockdown of the key ARRS model gene KIF14, we observed suppressed proliferation of NCIH929 cells, along with decreased adhesion to BMSCs and fibronectin. This study presents compelling evidence establishing cell adhesion as a significant prognostic factor in MM. Additionally, potential molecular mechanisms underlying adhesion-related resistance are proposed, along with viable strategies to overcome such resistance. These findings provide a solid scientific foundation for facilitating clinically stratified treatment of MM.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Cell Adhesion/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Neoplasm Recurrence, Local
17.
Small ; : e2311890, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38577919

ABSTRACT

Ulcerative colitis (UC), an immune-mediated chronic inflammatory disease, drastically impacts patients' quality of life and increases their risk of colorectal cancer worldwide. However, effective oral targeted delivery and retention of drugs in colonic lesions are still great challenges in the treatment of UC. Coacervate microdroplets, formed by liquid-liquid phase separation, are recently explored in drug delivery as the simplicity in fabrication, spontaneous enrichment on small molecules and biological macromolecules, and high drug loading capacity. Herein, in this study, a biocompatible diethylaminoethyl-dextran hydrochloride/sodium polyphenylene sulfonate coacervates, coated with eudragit S100 to improve the stability and colon targeting ability, named EU-Coac, is developed. Emodin, an active ingredient in traditional Chinese herbs proven to alleviate UC symptoms, is loaded in EU-Coac (EMO@EU-Coac) showing good stability in gastric acid and pepsin and pH-responsive release behavior. After oral administration, EMO@EU-Coac can effectively target and retain in the colon, displaying good therapeutic effects on UC treatment through attenuating inflammation and oxidative stress response, repairing colonic epithelia, as well as regulating intestinal flora balance. In short, this study provides a novel and facile coacervate microdroplet delivery system for UC treatment.

18.
Environ Sci Pollut Res Int ; 31(16): 23482-23504, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38483721

ABSTRACT

The contribution of urban non-point source (NPS) pollution to surface water pollution has gradually increased, analyzing the sources of urban NPS pollution is of great significance for precisely controlling surface water pollution. A bibliometric analysis of relevant research literature from 2000 to 2021 reveals that the main methods used in the source analysis research of urban NPS pollution include the emission inventory approach, entry-exit mass balance approach, principal component analysis (PCA), positive matrix factorization (PMF) model, etc. These methods are primarily applied in three aspects: source analysis of rainfall-runoff pollution, source analysis of wet weather flow (WWF) pollution in combined sewers, and analysis of the contribution of urban NPS to the surface water pollution load. The application of source analysis methods in urban NPS pollution research has demonstrated an evolution from qualitative to quantitative, and further towards precise quantification. This progression has transitioned from predominantly relying on on-site monitoring to incorporating model simulations and employing mathematical statistical analyses for traceability. This paper reviews the principles, advantages, disadvantages, and the scope of application of these methods. It also aims to address existing problems and analyze potential future development directions, providing valuable references for subsequent related research.


Subject(s)
Non-Point Source Pollution , Water Pollutants, Chemical , Non-Point Source Pollution/analysis , Environmental Monitoring/methods , Water Pollution/analysis , Weather , China , Water Pollutants, Chemical/analysis
19.
J Adv Res ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38479571

ABSTRACT

INTRODUCTION: Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication that affects an increasing number of cancer survivors. However, the current treatment options for CIPN are limited. Paclitaxel (PTX) is a widely used chemotherapeutic drug that induces senescence in cancer cells. While previous studies have demonstrated that Sonic hedgehog (Shh) can counteract cellular dysfunction during aging, its role in CIPN remains unknown. OBJECTIVES: Herein, the aim of this study was to investigate whether Shh activation could inhibits neuronal/glial senescence and alleviates CIPN. METHODS: We treated ND7/23 neuronal cells and RSC96 Schwann cells with two selective Shh activators (purmorphamine [PUR] and smoothened agonist [SAG]) in the presence of PTX. Additionally, we utilized a CIPN mouse model induced by PTX injection. To assess cellular senescence, we performed a senescence-associated ß-galactosidase (SA-ß-gal) assay, measured reactive oxygen species (ROS) levels, and examined the expression of P16, P21, and γH2AX. To understand the underlying mechanisms, we conducted ubiquitin assays, LC-MS/MS, H&E staining, and assessed protein expression through Western blotting and immunofluorescence staining. RESULTS: In vitro, we observed that Shh activation significantly alleviated the senescence-related decline in multiple functions included SA-ß-gal activity, expression of P16 and P21, cell viability, and ROS accumulation in DRG sensory neurons and Schwann cells after PTX exposure. Furthermore, our in vivo experiments demonstrated that Shh activation significantly reduced axonal degeneration, demyelination, and improved nerve conduction. Mechanistically, we discovered that PTX reduced the protein level of SP1, which was ubiquitinated by the E3 ligase TRIM25 at the lysine 694 (K694), leading to increased CXCL13 expression, and we found that Shh activation inhibited PTX-induced neuronal/glial senescence and CIPN through the TRIM25-SP1-CXCL13 axis. CONCLUSION: These findings provide evidence for the role of PTX-induced senescence in DRG sensory neurons and Schwann cells, suggesting that Shh could be a potential therapeutic target for CIPN.

20.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38487850

ABSTRACT

The screening of enzymes for catalyzing specific substrate-product pairs is often constrained in the realms of metabolic engineering and synthetic biology. Existing tools based on substrate and reaction similarity predominantly rely on prior knowledge, demonstrating limited extrapolative capabilities and an inability to incorporate custom candidate-enzyme libraries. Addressing these limitations, we have developed the Substrate-product Pair-based Enzyme Promiscuity Prediction (SPEPP) model. This innovative approach utilizes transfer learning and transformer architecture to predict enzyme promiscuity, thereby elucidating the intricate interplay between enzymes and substrate-product pairs. SPEPP exhibited robust predictive ability, eliminating the need for prior knowledge of reactions and allowing users to define their own candidate-enzyme libraries. It can be seamlessly integrated into various applications, including metabolic engineering, de novo pathway design, and hazardous material degradation. To better assist metabolic engineers in designing and refining biochemical pathways, particularly those without programming skills, we also designed EnzyPick, an easy-to-use web server for enzyme screening based on SPEPP. EnzyPick is accessible at http://www.biosynther.com/enzypick/.

SELECTION OF CITATIONS
SEARCH DETAIL
...