Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 769
Filter
1.
Plant Physiol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717740

ABSTRACT

The circadian system plays a pivotal role in facilitating the ability of crop plants to respond and adapt to fluctuations in their immediate environment effectively. Despite the increasing comprehension of PSEUDO-RESPONSE REGULATORs (PRRs) and their involvement in the regulation of diverse biological processes, including circadian rhythms, photoperiodic control of flowering, and responses to abiotic stress, the transcriptional networks associated with these factors in soybean (Glycine max (L.) Merr.) remain incompletely characterized. In this study, we provide empirical evidence highlighting the significance of GmPRR3b as a crucial mediator in regulating the circadian clock, drought stress response, and abscisic acid (ABA) signaling pathway in soybeans. A comprehensive analysis of DNA affinity purification sequencing and transcriptome data identified 795 putative target genes directly regulated by GmPRR3b. Among them, a total of 570 exhibited a significant correlation with the response to drought, and eight genes were involved in both the biosynthesis and signaling pathways of ABA. Notably, GmPRR3b played a pivotal role in the negative regulation of the drought response in soybeans by suppressing the expression of abscisic acid responsive element-binding factor 3 (GmABF3). Additionally, the overexpression of GmABF3 exhibited an increased ability to tolerate drought conditions, and it also restored the hypersensitive phenotype of the GmPRR3b overexpressor. Consistently, studies on the manipulation of GmPRR3b gene expression and genome editing in plants revealed contrasting reactions to drought stress. The findings of our study collectively provide compelling evidence that emphasizes the significant contribution of the GmPRR3b-GmABF3 module in enhancing drought tolerance in soybean plants. Moreover, the transcriptional network of GmPRR3b provides valuable insights into the intricate interactions between this gene and the fundamental biological processes associated with plant adaptation to diverse environmental conditions.

2.
BMC Pregnancy Childbirth ; 24(1): 391, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807069

ABSTRACT

BACKGROUND: The worldwide occurrence of triplet pregnancy is estimated to be 0.093%, with a natural incidence of approximately 1 in 8000. This study aims to analyze the neonatal health status and birth weight discordance (BWD) of triplets based on chorionicity from birth until discharge. METHODS: This was a retrospective study. We reviewed a total of 136 triplet pregnancies at our tertiary hospital between January 1, 2001, and December 31, 2021. Maternal and neonatal outcomes, inter-triplet BWD, neonatal morbidity, and mortality were analyzed. RESULTS: Among all cases, the rates of intrauterine death, neonatal death, and perinatal death were 10.29, 13.07, and 24.26%, respectively. Thirty-seven of the cases resulted in fetal loss, including 13 with fetal anomalies. The maternal complications and neonatal outcomes of the 99 triplet pregnancies without fetal loss were compared across different chorionicities, including a dichorionic (DC) group (41 cases), trichorionic (TC) group (37 cases), and monochorionic (MC) group (21 cases). Neonatal hypoproteinemia (P < 0.001), hyperbilirubinemia (P < 0.019), and anemia (P < 0.003) exhibited significant differences according to chorionicity, as did the distribution of BWD (P < 0.001). More than half of the cases in the DC and TC groups had a BWD < 15%, while those in the MC group had a BWD < 50% (47.6%). TC pregnancy decreased the risk of neonatal anemia (adjusted odds ratio [AOR] = 0.084) and need for blood transfusion therapy after birth (AOR = 0.119). In contrast, a BWD > 25% increased the risk of neonatal anemia (AOR = 10.135) and need for blood transfusion after birth (AOR = 7.127). TC pregnancy, MCDA or MCTA, and BWD > 25% increased neonatal hypoproteinemia, with AORs of 4.629, 5.123, and 5.343, respectively. CONCLUSIONS: The BWD differed significantly according to chorionicity. Additionally, TC pregnancies reduced the risk of neonatal anemia and need for blood transfusion, but increased the risk of neonatal hypoproteinemia. In contrast, the BWD between the largest and smallest triplets increased the risk of neonatal anemia and the need for blood transfusion. TC pregnancy, MCDA or MCTA, and BWD > 25% increased the risks of neonatal hypoproteinemia. However, due to the limited number of triplet pregnancies, further exploration of the underlying mechanism is warranted.


Subject(s)
Chorion , Pregnancy Outcome , Pregnancy, Triplet , Humans , Female , Pregnancy , Retrospective Studies , Infant, Newborn , Adult , Pregnancy Outcome/epidemiology , Birth Weight , Triplets , Fetal Death/etiology
3.
ACS Biomater Sci Eng ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766805

ABSTRACT

The repair of critical-sized bone defects continues to pose a challenge in clinics. Strontium (Sr), recognized for its function in bone metabolism regulation, has shown potential in bone repair. However, the underlying mechanism through which Sr2+ guided favorable osteogenesis by modulating macrophages remains unclear, limiting their application in the design of bone biomaterials. Herein, Sr-incorporated bioactive glass (SrBG) was synthesized for further investigation. The release of Sr ions enhanced the immunomodulatory properties and osteogenic potential by modulating the polarization of macrophages toward the M2 phenotype. In vivo, a 3D-printed SrBG scaffold was fabricated and showed consistently improved bone regeneration by creating a prohealing immunological microenvironment. RNA sequencing was performed to explore the underlying mechanisms. It was found that Sr ions might enhance the mitochondrial function of macrophage by activating PI3K/AKT/mTOR signaling, thereby favoring osteogenesis. Our findings demonstrate the relationship between the immunomodulatory role of Sr ions and the mitochondrial function of macrophages. By focusing on the mitochondrial function of macrophages, Sr2+-mediated immunomodulation sheds light on the future design of biomaterials for tissue regenerative engineering.

4.
Virulence ; 15(1): 2350904, 2024 12.
Article in English | MEDLINE | ID: mdl-38725098

ABSTRACT

Fusobacterium nucleatum (F. nucleatum) is closely correlated with tumorigenesis in colorectal cancer (CRC). We aimed to investigate the effects of host norepinephrine on the carcinogenicity of F. nucleatum in CRC and reveal the underlying mechanism. The results revealed that both norepinephrine and bacterial quorum sensing (QS) molecule auto-inducer-2 (AI-2) were positively associated with the progression of F. nucleatum related CRC (p < 0.01). In vitro studies, norepinephrine induced upregulation of QS-associated genes and promoted the virulence and proliferation of F. nucleatum. Moreover, chronic stress significantly increased the colon tumour burden of ApcMin/+ mice infected with F. nucleatum (p < 0.01), which was decreased by a catecholamine inhibitor (p < 0.001). Our findings suggest that stress-induced norepinephrine may promote the progression of F. nucleatum related CRC via bacterial QS signalling. These preliminary data provide a novel strategy for the management of pathogenic bacteria by targeting host hormones-bacterial QS inter-kingdom signalling.


Subject(s)
Colorectal Neoplasms , Fusobacterium nucleatum , Norepinephrine , Quorum Sensing , Signal Transduction , Quorum Sensing/drug effects , Fusobacterium nucleatum/pathogenicity , Fusobacterium nucleatum/drug effects , Fusobacterium nucleatum/physiology , Animals , Colorectal Neoplasms/microbiology , Norepinephrine/pharmacology , Mice , Humans , Disease Progression , Fusobacterium Infections/microbiology , Virulence , Homoserine/analogs & derivatives , Homoserine/metabolism , Mice, Inbred C57BL , Male , Lactones
5.
Front Endocrinol (Lausanne) ; 15: 1284144, 2024.
Article in English | MEDLINE | ID: mdl-38699393

ABSTRACT

Background: Chinese visceral adiposity index (CVAI) is a reliable visceral obesity index, but the association between CVAI and risk of cardiovascular disease (CVD) remains unclear. We explored the associations of CVAI with incident CVD, heart disease, and stroke and compared the predictive power of CVAI with other obesity indices based on a national cohort study. Methods: The present study included 7,439 participants aged ≥45 years from China Health and Retirement Longitudinal Study (CHARLS). Cox regression models were applied to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Restricted cubic splines analyses were adopted to model the dose-response associations. Receiver operator characteristic (ROC) analyses were used to compare the predictive ability of different obesity indices (CVAI, visceral adiposity index [VAI], a body shape index [ABSI], conicity index [CI], waist circumference [WC], and body mass index [BMI]). Results: During 7 years' follow-up, 1,326 incident CVD, 1,032 incident heart disease, and 399 stroke cases were identified. The HRs (95% CI) of CVD, heart disease, and stroke were 1.50 (1.25-1.79), 1.29 (1.05-1.57), and 2.45 (1.74-3.45) for quartile 4 versus quartile 1 in CVAI. Linear associations of CVAI with CVD, heart disease, and stroke were observed (P nonlinear >0.05) and per-standard deviation (SD) increase was associated with 17% (HR 1.17, 1.10-1.24), 12% (1.12, 1.04-1.20), and 31% (1.31, 1.18-1.46) increased risk, respectively. Per-SD increase in CVAI conferred higher risk in participants aged<60 years than those aged ≥60 years (P interaction<0.05). ROC analyses showed that CVAI had higher predictive value than other obesity indices (P<0.05). Conclusions: CVAI was linearly associated with risk of CVD, heart disease, and stroke and had best performance for predicting incident CVD. Our findings indicate CVAI as a reliable and applicable obesity index to identify higher risk of CVD.


Subject(s)
Cardiovascular Diseases , Obesity, Abdominal , Humans , Male , Female , Middle Aged , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , China/epidemiology , Prospective Studies , Aged , Obesity, Abdominal/epidemiology , Obesity, Abdominal/complications , Body Mass Index , Adiposity , Longitudinal Studies , Risk Factors , Waist Circumference , Intra-Abdominal Fat , Follow-Up Studies , Incidence , Cohort Studies , East Asian People
6.
Cell Death Dis ; 15(5): 364, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802337

ABSTRACT

Mitochondrial dysfunction and oxidative stress are important mechanisms for secondary injury after traumatic brain injury (TBI), which result in progressive pathophysiological exacerbation. Although the Fibronectin type III domain-containing 5 (FNDC5) was reported to repress oxidative stress by retaining mitochondrial biogenesis and dynamics, its possible role in the secondary injury after TBI remain obscure. In present study, we observed that the level of serum irisin (the cleavage product of FNDC5) significantly correlated with the neurological outcomes of TBI patients. Knockout of FNDC5 increased the lesion volume and exacerbated apoptosis and neurological deficits after TBI in mice, while FNDC5 overexpression yielded a neuroprotective effect. Moreover, FNDC5 deficiency disrupted mitochondrial dynamics and function. Activation of Sirtuin 3 (SIRT3) alleviated FNDC5 deficiency-induced disruption of mitochondrial dynamics and bioenergetics. In neuron-specific SIRT3 knockout mice, FNDC5 failed to attenuate TBI-induced mitochondrial damage and brain injuries. Mechanically, FNDC5 deficiency led to reduced SIRT3 expression via enhanced ubiquitin degradation of transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2), which contributed to the hyperacetylation and inactivation of key regulatory proteins of mitochondrial dynamics and function, including OPA1 and SOD2. Finally, engineered RVG29-conjugated nanoparticles were generated to selectively and efficiently deliver irisin to the brain of mice, which yielded a satisfactory curative effect against TBI. In conclusion, FNDC5/irisin exerts a protective role against acute brain injury by promoting SIRT3-dependent mitochondrial quality control and thus represents a potential target for neuroprotection after TBI.


Subject(s)
Apoptosis , Brain Injuries, Traumatic , Fibronectins , Mice, Knockout , Mitochondria , Neurons , Oxidative Stress , Sirtuin 3 , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/genetics , Sirtuin 3/metabolism , Sirtuin 3/genetics , Fibronectins/metabolism , Mitochondria/metabolism , Neurons/metabolism , Neurons/pathology , Mice , Humans , Male , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Mitochondrial Dynamics
7.
Acta Pharmacol Sin ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698214

ABSTRACT

The retinoic acid receptor-related orphan receptor γ (RORγ) is regarded as an attractive therapeutic target for the treatment of prostate cancer. Herein, we report the identification, optimization, and evaluation of 1,2,3,4-tetrahydroquinoline derivatives as novel RORγ inverse agonists, starting from high throughput screening using a thermal stability shift assay (TSA). The representative compounds 13e (designated as XY039) and 14a (designated as XY077) effectively inhibited the RORγ transcriptional activity and exhibited excellent selectivity against other nuclear receptor subtypes. The structural basis for their inhibitory potency was elucidated through the crystallographic study of RORγ LBD complex with 13e. Both 13e and 14a demonstrated reasonable antiproliferative activity, potently inhibited colony formation and the expression of AR, AR regulated genes, and other oncogene in AR positive prostate cancer cell lines. Moreover, 13e and 14a effectively suppressed tumor growth in a 22Rv1 xenograft tumor model in mice. This work provides new and valuable lead compounds for further development of drugs against prostate cancer.

8.
Toxicol Appl Pharmacol ; 487: 116960, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735592

ABSTRACT

BACKGROUND: The intestinal metabolites are involved in the initiation, progression and metastasis of colorectal cancer (CRC). They are a potential source of agents for cancer therapy. Our previous study identified altered faecal metabolites between CRC patients and healthy volunteers. However, no specific metabolite was clearly illustrated for CRC therapy. RESULTS: We found that the level of xylulose was lower in the stools of CRC patients than in those of healthy volunteers. Xylulose inhibited cell growth without affecting the cell cycle by inducing apoptosis in CRC cells, which was evidenced by increased expression of the proapoptotic proteins C-PARP and C-Caspase3 and decreased expression of the antiapoptotic protein BCL-2 in CRC cells. Mechanistically, xylulose reduced the activity of the MAPK signalling pathway, represented by reduced phosphorylation of JNK, ERK, and P38. Furthermore, an ALI model was used to show the tumour killing ability of xylulose on human CRC spheres, as well as human colorectal adenoma (AD) spheres. CONCLUSION: Xylulose inhibits CRC growth by inducing apoptosis through attenuation of the MAPK signalling pathway. These results suggest that xylulose may serve as an effective agent for CRC therapy.

9.
Microorganisms ; 12(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38674627

ABSTRACT

Soil salinization poses a global threat to terrestrial ecosystems. Soil microorganisms, crucial for maintaining ecosystem services, are sensitive to changes in soil structure and properties, particularly salinity. In this study, contrasting dynamics within the rhizosphere and bulk soil were focused on exploring the effects of heightened salinity on soil microbial communities, evaluating the influences shaping their composition in saline environments. This study observed a general decrease in bacterial alpha diversity with increasing salinity, along with shifts in community structure in terms of taxa relative abundance. The size and stability of bacterial co-occurrence networks declined under salt stress, indicating functional and resilience losses. An increased proportion of heterogeneous selection in bacterial community assembly suggested salinity's critical role in shaping bacterial communities. Stochasticity dominated fungal community assembly, suggesting their relatively lower sensitivity to soil salinity. However, bipartite network analysis revealed that fungi played a more significant role than bacteria in intensified microbial interactions in the rhizosphere under salinity stress compared to the bulk soil. Therefore, microbial cross-domain interactions might play a key role in bacterial resilience under salt stress in the rhizosphere.

10.
Sci Adv ; 10(17): eadk3852, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657063

ABSTRACT

Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.


Subject(s)
Animal Migration , Genomics , Wind , Animals , Genomics/methods , Hemiptera/genetics , Genome, Insect , Genetics, Population
11.
J Gen Virol ; 105(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38602389

ABSTRACT

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Subject(s)
Hemiptera , Orthobunyavirus , RNA Viruses , Animals , Female , Phylogeny , Insecta , RNA Viruses/genetics
12.
Adv Sci (Weinh) ; : e2306671, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639383

ABSTRACT

Cancer metastasis is the leading cause of mortality in patients with hepatocellular carcinoma (HCC). To meet the rapid malignant growth and transformation, tumor cells dramatically increase the consumption of nutrients, such as amino acids. Peptide transporter 1 (PEPT1), a key transporter for small peptides, has been found to be an effective and energy-saving intracellular source of amino acids that are required for the growth of tumor cells. Here, the role of PEPT1 in HCC metastasis and its underlying mechanisms is explored. PEPT1 is upregulated in HCC cells and tissues, and high PEPT1 expression is associated with poor prognosis in patients with HCC. PEPT1 overexpression dramatically promoted HCC cell migration, invasion, and lung metastasis, whereas its knockdown abolished these effects both in vitro and in vivo. Mechanistic analysis revealed that high PEPT1 expression increased cellular dipeptides in HCC cells that are responsible for activating the MAP4K4/G3BP2 signaling pathway, ultimately facilitating the phosphorylation of G3BP2 at Thr227 and enhancing HCC metastasis. Taken together, these findings suggest that PEPT1 acts as an oncogene in promoting HCC metastasis through dipeptide-induced MAP4K4/G3BP2 signaling and that the PEPT1/MAP4K4/G3BP2 axis can serve as a promising therapeutic target for metastatic HCC.

13.
J Chromatogr Sci ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576204

ABSTRACT

An analytical method was developed for the screening of 172 veterinary drugs in traditional Chinese medicine Galli Gigerii Endothelium Corneum by high-performance liquid chromatography tandem mass spectrometry. The samples were pretreated by a modified QuEChERS method. A Zorbax Eclipse plus C18 column (1.8 µm, 3.0 × 150 mm2, Agilent) was used for the separation of analytes by gradient elution. All analytes were detected by electrospray ionization mass spectrometry with multiple reaction monitoring mode. Good linearity with R ≥ 0.99 was exhibited for all analytes within the respective range. The recoveries of all monitored analytes ranged from 55.4 to 127.6% at three spiked levels (limit of quantitation-LOQ, 2-fold LOQ, 10-fold LOQ), with relative standard deviations <17.8%. The estimated LOQ levels were 0.2-20 µg/kg. The application of this method provides a reference for the safety control of traditional Chinese medicines.

14.
Inflamm Bowel Dis ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552106

ABSTRACT

AIMS: Inflammatory bowel disease (IBD) is associated with F. nucleatum, and chronic stress can increase the risk of aggravation. However, whether norepinephrine (NE) can enhance the pathogenicity of F. nucleatum to aggravate dextran sulfate sodium salt (DSS)-induced colitis is unclear. METHODS: Transcriptome sequencing was used to identify differentially expressed genes in bacteria treated with NE. Affinity testing and molecular docking were applied to calculate and predict the binding of NE and Quorum sensing  regulators C (QseC). The pathogenicity of Fusobacterium nucleatum treated with NE and QseC inhibitors was examined in vitro and further verified using the IBD mouse model induced by DSS. RESULTS: Norepinephrine could bind to QseC directly to upregulate the quorum sensing pathway of F. nucleatum and enhance its virulence gene expression (FadA, FomA, Fap2) and invasiveness in vitro. Meanwhile, it promoted the invasion of F. nucleatum into the intestine and increased the expression of host inflammatory cytokines (IL-6, IL-1ß) to aggravate colonic inflammation in IBD mice. The QseC inhibitor LED209 inhibited the effect of NE on F. nucleatum and partially restored short-chain fatty acid (SCFA)-producing bacteria (Prevotellaceae, Lactobacillaceae) to attenuate colonic inflammation in IBD mice. CONCLUSIONS: Generally, the NE-QseC axis enhanced the pathogenicity of F. nucleatum through interkingdom signaling to aggravate colonic inflammation in IBD mice. We see that QseC may be a potential target for microbiota management of IBD under chronic pressure.


Norepinephrine could bind to QseC directly to enhance the pathogenicity of F. nucleatum to aggravate colonic inflammation. The QseC inhibitor inhibited the effect of NE on F. nucleatum and partially restored short-chain fatty acid­producing bacteria to attenuate colonic inflammation.

15.
Arch Gynecol Obstet ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431699

ABSTRACT

INTRODUCTION: Pregnant women with pre-excitation syndrome are more likely to develop supraventricular tachycardia (SVT) during pregnancy and delivery, leading to an increased risk of adverse events. METHOD: This was a retrospective study of 309 pregnancies in 280 women (29 women had two pregnancies in this series) with pre-excitation syndrome who delivered at West China Second University Hospital from June 2011 to October 2021. All the 309 pregnant women with pre-excitation syndrome were divided into SVT and non-SVT groups to analyze the cardiac and obstetric complications. RESULTS: Among the included pregnant women in the past 10 years, the prevalence of pre-excitation syndrome was 0.24% (309/127725). There were 309 cases with pre-excitation syndrome in all hospitalized pregnant women. Among them, 62 (20.1%, 62/309) had a history of SVT. In the 62 cases with SVT during pregnancy, 22 (35.5%) cases had a history of SVT. Gestational diabetes mellitus was associated with SVT during pregnancy. The cesarean section rate was 88.7% in the SVT group, which was significantly higher than that in the non-SVT group (64.8%) (P < 0.001). Cases with SVT during pregnancy had more cardiac and obstetric complications. Four fetal deaths were recorded in the SVT group. Additionally, 29 women experienced two pregnancies during the study period, among whom, five received radiofrequency ablation after the first delivery and obtained better outcomes in the second pregnancy. CONCLUSION: The adverse outcomes such as cardiac complications, maternal and fetal complications (PROM, prematurity, SGA, fetal distress, etc.) in pregnant women with pre-excitation syndrome were closely related to SVT, with possible risk factors including history of SVT before pregnancy, cardiac function, heart organic abnormalities, and gestational diabetes mellitus.

16.
Sci Rep ; 14(1): 7593, 2024 03 31.
Article in English | MEDLINE | ID: mdl-38556590

ABSTRACT

Long non-coding RNAs (lncRNAs) and Sialic acid-binding immunoglobulin-type lectin (SIGLEC) family members play an important role in proliferation, apoptosis, immune-cell activation and tumor development. However, the relationships of SIGLEC family-related lncRNAs with clinical prognosis and tumor immune microenvironment in ovarian cancer (OC) are still unclear. 426 SIGLEC family-related lncRNAs were obtained according to the screening criteria R > 0.4 and p < 0.05 using Pearson correlation analysis. A risk model contained AL133279.1, AL021878.2, AC078788.1, AC039056.2, AC008750.1 and AC007608.3 was conducted based on the univariate Cox regression analysis, a least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression analyses. OC patient were divided into high-and low-risk group based on the median riskscore. K-M curve and ROC curve revealed that risk model has an abuset prognostic potential for OC patients. Moreover, we successfully validated the prognostic value of the model in the internal datasets, external datasets and clinical sample dataset. Finally, we found that the riskscore was positively correlated with the vast majority of immune cell infiltration. In conclusion, our research identified that a novel SIGLEC family-related lncRNAs risk model to predict the prognosis of OC patients. SIGLEC family-related lncRNAs risk model also has a positive relationship with the tumor immune microenvironment of OC, which may provide a new direction for immunotherapy of OC.


Subject(s)
Ovarian Neoplasms , RNA, Long Noncoding , Humans , Female , RNA, Long Noncoding/genetics , Sialic Acid Binding Immunoglobulin-like Lectins , Ovarian Neoplasms/genetics , Prognosis , Antigen Presentation , Tumor Microenvironment/genetics
17.
Angew Chem Int Ed Engl ; 63(13): e202400828, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38326235

ABSTRACT

Targeted synthesis of acetic acid (CH3 COOH) from CO2 photoreduction under mild conditions mainly limits by the kinetic challenge of the C-C coupling. Herein, we utilized doping engineering to build charge-asymmetrical metal pair sites for boosted C-C coupling, enhancing the activity and selectivity of CO2 photoreduction towards CH3 COOH. As a prototype, the Pd doped Co3 O4 atomic layers are synthesized, where the established charge-asymmetrical cobalt pair sites are verified by X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy spectra. Theoretical calculations not only reveal the charge-asymmetrical cobalt pair sites caused by Pd atom doping, but also manifest the promoted C-C coupling of double *COOH intermediates through shortening of the coupled C-C bond distance from 1.54 to 1.52 Å and lowering their formation energy barrier from 0.77 to 0.33 eV. Importantly, the decreased reaction energy barrier from the protonation of two*COOH into *CO intermediates for the Pd-Co3 O4 atomic layer slab is 0.49 eV, higher than that of the Co3 O4 atomic layer slab (0.41 eV). Therefore, the Pd-Co3 O4 atomic layers exhibit the CH3 COOH evolution rate of ca. 13.8 µmol g-1 h-1 with near 100% selectivity, both of which outperform all previously reported single photocatalysts for CO2 photoreduction towards CH3 COOH under similar conditions.

18.
J Mol Cell Biol ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38323478

ABSTRACT

In eukaryotes, microtubule polymers are essential for cellular plasticity and fate decisions. End-binding (EB) proteins serve as scaffolds for orchestrating microtubule polymer dynamics and are essential for cellular dynamics and chromosome segregation in mitosis. Here, we show that EB1 forms molecular condensates with TIP150 and MCAK through liquid-liquid phase separation to compartmentalize the kinetochore-microtubule plus-end machinery, ensuring accurate kinetochore-microtubule interactions during chromosome segregation in mitosis. Perturbation of EB1-TIP150 polymer formation by a competing peptide prevents phase separation of the EB1-mediated complex and chromosome alignment at the metaphase equator in both cultured cells and Drosophila embryos. Lys220 of EB1 is dynamically acetylated by p300/CBP-associated factor in early mitosis, and persistent acetylation at Lys220 attenuates the phase separation of the EB1-mediated complex, dissolves droplets in vitro, and harnesses accurate chromosome segregation. Our data suggest a novel framework for understanding the organization and regulation of eukaryotic spindle for accurate chromosome segregation in mitosis.

19.
Anticancer Res ; 44(2): 797-803, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38307578

ABSTRACT

BACKGROUND/AIM: This study examined the clinical significance of very high preoperative carbohydrate antigen 19-9 (CA19-9) levels in patients with early-stage colorectal cancer (CRC). PATIENTS AND METHODS: We retrospectively analyzed the clinicopathological data of patients who underwent curative resection for primary CRC (c-Stage I-III) between 2004 and 2022 in our facility. The patients were classified into three groups according to the preoperative CA19-9 level: normal (≤37.0 U/ml), high (>37.0 to ≤100.0 U/ml), and very high (>100.0 U/ml). RESULTS: Of 971 patients, 885 (91.1%), 67 (6.9%), and 19 (2.0%) had normal, high, and very high CA19-9 levels, respectively. Overall survival (very high vs. normal: p<0.0001, very high vs. high: p=0.01) and recurrence-free survival (very high vs. normal: p<0.0001, very high vs. high: p=0.18) were significantly worse in the very high group. On multivariate analysis including TNM stage, very high preoperative CA19-9 levels were independently associated with worse overall (odds ratio=4.54; 95% confidence interval=2.03-10.16; p=0.0002) and recurrence-free survival (odds ratio=3.49; 95% confidence interval=1.82-6.69; p=0.0002). CONCLUSION: High preoperative CA19-9 levels were associated with poor survival in early-stage CRC. Careful intraoperative observation and close follow-up might be necessary.


Subject(s)
CA-19-9 Antigen , Colorectal Neoplasms , Humans , Biomarkers, Tumor , Retrospective Studies , Carcinoembryonic Antigen , Prognosis , Neoplasm Staging , Colorectal Neoplasms/pathology
20.
Nat Commun ; 15(1): 1558, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378705

ABSTRACT

Extracting rare earth elements (REEs) from wastewater is essential for the growth and an eco-friendly sustainable economy. However, it is a daunting challenge to separate individual rare earth elements by their subtle differences. To overcome this difficulty, we report a unique REE nanotrap that features dense uncoordinated carboxyl groups and triazole N atoms in a two-fold interpenetrated metal-organic framework (named NCU-1). Notably, the synergistic effect of suitable pore sizes and REE nanotraps in NCU-1 is highly responsive to the size variation of rare-earth ions and shows high selectivity toward light REE. As a proof of concept, Pr/Lu and Nd/Er are used as binary models, which give a high separation factor of SFPr/Lu = 796 and SFNd/Er = 273, demonstrating highly efficient separation over a single step. This ability achieves efficient and selective extraction and separation of REEs from mine tailings, establishing this platform as an important advance for sustainable obtaining high-purity REEs.

SELECTION OF CITATIONS
SEARCH DETAIL
...