Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 42(3): 1298-1305, 2021 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-33742926

ABSTRACT

Volatile organic compounds (VOCs) play important roles in the formation of ozone and fine particles in the troposphere. Industrial parks emit significant amounts of VOCs in China, while few studies have characterized them. In the present study, a mobile platform was employed to measure the levels and composition VOCs around industrial parks in the Yangzte River Delta region. The average concentration of VOCs ranged from 39 µg·m-3 (5% percentile) to 533 µg·m-3 (95% percentile) with an average of 183 µg·m-3, which was three times that of ambient concentrations. Maximum VOC concentrations ranged from 307 µg·m-3 (5% percentile) to 12006 µg·m-3 (95% percentile) with an average of 2812 µg·m-3. The frequency of abnormal peak values was as high as 64% across all the industrial parks, of which toluene (32%), xylene (18%), benzene (9%), and>C9 aromatics (19%) were the most common species. Differences in VOC characteristics were observed among the different types of industrial parks. Specifically, highest concentrations of VOCs were observed in textile industrial parks followed by chemical, painting, and petrochemical industrial parks, and VOC concentrations in electronics industrial parks were the lowest. Importantly, species measured using the mobile platform only contributed~50% of VOCs present in ambient samples, indicating that the concentrations of VOCs in the industrial parks were underestimated overall. These results can inform measures to control VOC pollution in industrial parks in China.

2.
Huan Jing Ke Xue ; 41(3): 1151-1157, 2020 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-32608616

ABSTRACT

Particle size distribution and emission factors from 9 State 3-5 light-duty gasoline vehicles (LDGVs) and 15 State 3-5 heavy-duty diesel vehicles (HDDVs) were tested in this study using a constant volume sampling (CVS) system on a dynamometer. The influences of driving cycles and emission control level on the PM emission factors and particle size distribution were analyzed. The results show that the PM emission factors of the tested LDGVs and HDDVs were (4.1±4.0)×1014 and (5.7±4.3)×1015 kg-1, respectively; the HDDV PM emission factor was (14±7) times less than that of LDGVs. Regarding LDGVs, the PM emission factor under the extra high speed condition was much more than that of the other speed conditions at (5.1±5.0)×1013 km-1, 11.7, 14.1, and 7.3 times more than that under the low, medium, and high speed conditions, respectively. Regarding HDDVs, the emission factor under the high speed condition was 2.5 and 1.4 times that under the low and medium speed conditions, respectively, and was mostly of nuclei-mode particles. At the emission control level of State 3-5, the PM emission factors of LDGVs were (2.7±1.7)×1013, (2.6±1.3)×1013, and (1.6±1.2)×1013 km-1, respectively, and those of HDDVs were (2.2±1.2)×1015, 2.0×1015, and (7.1±2.1)×1014 km-1, respectively. With improvement in emission control level, the particle number emission control of LDGVs and HDDVs generally showed a good downward trend. However, the emission of PM above 110 nm from LDGVs did not improve with the emission control level. Although the quantity emission factor of HDDVs with particle size above 110 nm is relatively low, its harm to the environment cannot be ignored, which should justify necessary attention.

3.
Huan Jing Ke Xue ; 41(1): 133-138, 2020 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-31854913

ABSTRACT

In typical cities of East China, more than 900 non-road vehicles were tested for exhaust smoke. Based on the investigation of the properties of these non-road vehicles, exhaust smoke intensities for different kinds of non-road vehicles are recommended. We also quantitatively study the differences in smoke intensity among vehicle age, vehicle power, test conditions, and fuels. The results showed that smoke intensity of non-road vehicles was (1.02±0.57) m-1 and that Ringelmann smoke was 2.10±0.19. In comparison to Chinese national standard (GB 36886), approximately 12%-25% of tested non-road vehicles' smoke intensity exceeded the standard limit. The smoke intensity of 80% of tested non-road vehicles was higher during start-up than under free acceleration. In comparison to ordinary diesel, the smoke intensities of tested non-road vehicles that used automotive diesel were lower. The instantaneous increase in fuel injection during start-up, as well as poor fuel quality, can directly affect the exhaust smoke of non-road vehicles.

4.
Huan Jing Ke Xue ; 39(10): 4463-4471, 2018 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-30229592

ABSTRACT

The selective catalytic reduction system (SCR) is an essential method to reduce NOx emissions from heavy-duty diesel engine-powered vehicles, which include conventional diesel buses and diesel-electric hybrid buses. Using wireless remote communication technology, the SCR system status and NOx emissions were reviewed for ten fully-operational hybrid buses from Hangzhou China in this research. Under the internal combustion engine mode, the main factors studied were vehicle speed, engine operation conditions and environment temperature, impact on the SCR catalyst outlet temperature and NOx concentration and dosing rate of the urea injector of the SCR system. The research result shows that (32.4±4)% of the operational time of the hybrid buses with SCR system was spent in internal combustion engine mode, and under (26.9±11)% of the operation time of this mode, the SCR system did not dose urea. The average NOx emission reduction rate of the SCR system, when operating normally with hybrid buses, is about 59%. The main reasons for the high NOx emission of the diesel-electric hybrid buses in operation condition are poor satisfaction of the requirements of the SCR system control strategy and the SCR catalyst's low temperature conversion efficiency. Whenever the speed of the hybrid buses was above 40 km·h-1, the SCR catalyst outlet temperatures were higher than the 230℃, and the NOx emission concentrations were significantly reduced, as the urea injector working proportion and urea quantity increased. In the winter, the SCR catalyst outlet temperature and urea injection quantity dropped with the reduced environment temperature, which led to increased NOx emissions.

5.
Huan Jing Ke Xue ; 39(7): 3110-3117, 2018 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-29962133

ABSTRACT

Organic carbon (OC) and elemental carbon (EC) emission factors from 27 State 3-5 light-duty gasoline vehicles (LDGVs) were tested in this study using a CVS (Constant Volume Sampling) system on a dynamometer. The influences of start conditions, driving cycles, and fuel injection technologies on the OC and EC emissions were analyzed. The results show that the OC emission factors of the tested State 3 to 5 LDGVs were (2.09±1.03), (1.59±0.78), and (0.75±0.31) mg·km-1, respectively, and the EC emission factors were (1.98±1.42), (1.57±1.80), and (0.65±0.49) mg·km-1. Both OC and EC emissions significantly decreased with the promotion of emission standards. The OC/EC ratios were 1.54±0.92, 1.53±0.91, and 1.47±0.66, respectively. OC1, OC2, EC1, and EC2 were the most important carbonaceous components from LDGVs, accounting for 15%, 20.6%, 22.2%, and 21.7%, respectively. OC and EC emission factors under cold-start conditions were 1.4 and 1.8 times those under hot-start conditions. OC and EC emission factors for highway cycles were 2 and 4 times those for urban cycles. OC emission factors from GDI (Gasoline Direct Injection) engines were close to those from PFI (Port Fuel Injection) engines. However, their EC emission factors were 1.7 times those from PFI engines. With the increasing popularity of GDI engines in LDGV fleets in China, the EC emissions from these engines should be paid more attention in the future.

6.
Huan Jing Ke Xue ; 38(7): 2738-2746, 2017 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-29964612

ABSTRACT

Based on site investigation of non-road vehicles in Shanghai and Hangzhou located in east China, non-road vehicle emission inventory in 2014 was established in these cities as well as its emission inventory technology. Characteristics of non-road vehicle were also analyzed, including classification, type of fuel, power and emission standard. The results showed that diesel consumed by non-road vehicles was 6.1×105 t in Shanghai and 3.2×105 t in Hangzhou; NOx emission was 3.09×104 t in Shanghai and 1.72×104 t in Hangzhou; PM2.5 emission was 1.41×103 t in Shanghai and 8.1×102 t in Hangzhou, 2014. Emissions from excavators and other construction equipment contributed the most in non-road vehicle emission inventory. Non-road vehicle has become one of the important sources of urban air pollution, whose NOx emissions accounted for 11.1% of all urban sources in Shanghai and 16.1% in Hangzhou, and accounted for 18.5% of mobile sources in Shanghai and 32.2% in Hangzhou.

7.
Huan Jing Ke Xue ; 38(6): 2294-2300, 2017 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-29965346

ABSTRACT

Gaseous emissions from 25 State 2-5 light-duty gasoline vehicles were tested by Vehicle Mass Analysis System (VMAS) and CVS (Constant Volume Sampling) system, respectively. The correlations of emission factors of tested vehicles measured by these 2 methods were analyzed. The results showed that emission factors of light-duty gasoline vehicle had a decreasing trend with the promotion of emission standard. There were some high-emitting vehicles in the fleet of tested State 2 and State 3 vehicles, but fewer in State 4 or Stated 5 vehicle fleet. The correlations of the emission factors measured by the 2 methods deteriorated with the promotion of emission standard. The relative bias of CO and HC+NOx emission factors measured by the 2 methods reached 197% and 177%, respectively. The correlation coefficient of emission factors of higher-emitting vehicles was 0.75-0.85, while that of lower-emitting vehicles was only 0.46. If tighter emission standard of in-use light-duty gasoline vehicle was adopted, the false positive rate of measurement results by VMAS would rise significantly. In summary, VMAS method is hard to be applied in the emission measurements of light-duty gasoline vehicles with stricter emissions standard. It is necessary to conduct more studies on sophisticated in-use vehicle measurement system.

SELECTION OF CITATIONS
SEARCH DETAIL
...