Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Scanning ; 2021: 7846116, 2021.
Article in English | MEDLINE | ID: mdl-34408807

ABSTRACT

In this paper, ER50-6 steel was fabricated by wire arc additive manufacturing (WAAM) with an A-W GTAW system. The microstructure, mechanical properties, and corrosion behaviors of ER50-6 steel by WAAM were studied. The results showed that, with the GMAW current increased, from the bottom to the top of the sample, the microstructure was fine ferrite and granular pearlite, ferrite equiaxed grains with fine grains at grain boundaries, and columnar ferrite, respectively. The average hardness in the vertical direction of samples 1# and 2# was 146 and 153 HV, respectively. The hardness of sample 2# increased because of the refinement of grain. The pores in the sample increased as the bypass current increased. The higher bypass current also has a deterioration effect on the corrosion behavior of ER50-6 steel.

2.
Materials (Basel) ; 13(23)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255195

ABSTRACT

Considering the coupling of a droplet, keyhole, and molten pool, a three-dimensional transient model for the full penetration laser + metal inert gas (MIG) hybrid welding of thin copper alloy plate was established, which is able to simulate the temperature and velocity fields, keyhole behavior, and generation of the welding defect. Based on the experimental and simulation results, the weld formation mechanism for the hybrid butt welding of a 2 mm-thick copper alloy plate was comparatively studied in terms of the fluid dynamic feature of the melt pool. For single laser welding, the dynamic behavior of liquid metal near the rear keyhole wall is complex, and the keyhole has a relatively drastic fluctuation. An obvious spattering phenomenon occurs at the workpiece backside. Meanwhile, the underfill (or undercut) defect is formed at both the top and bottom surfaces of the final weld bead, and the recoil pressure is identified as the main factor. In hybrid welding, a downward fluid flow is strengthened on the rear keyhole wall, and the stability of the keyhole root is enhanced greatly. There are large and small clockwise vortexes emerging in the upper and lower parts of the molten pool, respectively. A relatively stable metal bulge can be produced at the weld pool backside. The formation defects are suppressed effectively, increasing the reliability of full penetration butt welding of the thin copper alloy plate.

3.
Materials (Basel) ; 12(8)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018601

ABSTRACT

A three-dimensional numerical model is used to simulate heat transfer and fluid flow phenomena in fiber laser + gas metal arc welding (GMAW) hybrid welding of an aluminum alloy, which incorporates three-phase coupling and is able to depict the keyhole dynamic behavior and formation process of the keyhole-induced porosity. The temperature profiles and fluid flow fields for different arc powers are calculated and the percent porosities of weld beads were also examined under different conditions by X-ray non-destructive testing (NDT). The results showed that the computed results were in agreement with the experimental data. For hybrid welding, with raising arc power, the keyhole-induced porosity was reduced. Besides the solidification rate of the molten pool, the melt flow was also closely related to weld porosity. A relatively steady anti-clockwise vortex caused by arc forces tended to force the bubble to float upwards at the high temperature region close to the welding heat source, which benefits the escape of the gas bubble from the melt pool. When increasing the arc power, the anti-clockwise region was strengthened and the risk of the gas bubble for capture by the liquid/solid interface underneath the keyhole tip was diminished, which resulted in the lower weld percent porosity.

SELECTION OF CITATIONS
SEARCH DETAIL
...