Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(46): 17299-17307, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37937439

ABSTRACT

Reasonable construction of hierarchical electrode materials is verified as a promising way to improve the electrochemical performance due to the synergistic effect between unique components and constructions. Hence, a hierarchical nanostructure composed of tungsten oxide nanorods anchored on TiO2 nanowires coupled with a carbon layer (TiO2@WOx-C NWs) was synthesized as an electrode material by exploiting the self-assembly function of dopamine and carbonization. The inner one-dimensional TiO2 nanowires served as the stable substrate with WOx anchored on the surface of TiO2 NWs and the tightly coupled carbon nanosheets, which can not only facilitate electron transport but also provide more active sites for electrochemical reactions. As a result, benefitting from the synergistic effects between three functional components and the multi-dimensional hierarchical structures, the as-prepared TiO2@WOx-C NWs displayed excellent lithium storage performance with a specific capacity of 651.4 mA h g-1 after 500 cycles at 1.0 A g-1, which is superior to most Ti-based structures. The enhanced electrochemical performance is mainly attributed to the synergistic effect of the different dimensional structures, the high capacity of tungsten oxide and the surface coating of the conductive carbon material. This work provides a simple and effective approach to designing functional hierarchical structures for energy storage and conversion.

2.
ACS Nano ; 17(20): 20024-20033, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37831502

ABSTRACT

Hierarchical multiscale wrinkling nanostructures have shown great promise for many biomedical applications, such as cancer diagnosis and therapy. However, synthesizing these materials with precise control remains challenging. Here, we report a sulfur doping strategy to synthesize sub-1 nm NiFe hydroxide ultrathin nanosheets (S-NiFe HUNs). The introduction of sulfur affects the reduction of the band gap and the adjustment of the electronic structure, thereby improving the light absorption ability of the S-NiFe HUNs. Additionally, S-NiFe HUNs show a multilayered nanobowl-like structure that enables multiple reflections of incident light inside the nanostructure, which improved the utilization of incident light and achieved high photothermal conversion. As a result, the as-prepared product with hydrophilic modification (dS-NiFe HUNs) demonstrated enhanced tumor-killing ability in vitro. In a mouse model of breast cancer, dS-NiFe HUNs combined with near-infrared light irradiation greatly inhibited tumor growth and prolonged the mice survival. Altogether, our study demonstrates the great potential of dS-NiFe HUNs for cancer photothermal therapy applications.


Subject(s)
Nanostructures , Neoplasms , Animals , Mice , Photothermal Therapy , Neoplasms/therapy , Phototherapy , Nanostructures/chemistry , Sulfur
SELECTION OF CITATIONS
SEARCH DETAIL
...