Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 33(19)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35090146

ABSTRACT

Rational design is essential in the synthesis of electrocatalysts for the oxygen reduction reaction (ORR). Herein, we introduced zeolitic imidazolate framework-8 (ZIF-8) and polyvinyl pyrrolidone (PVP) into the electrospinning process of the polyacrylonitrile (PAN) and hemin to increase the active site loading and exposed active area of the final product with empty bead-like structures. In this method, ZIF-8 acts as a carbon skeleton to provide a rich microporous structure that can support active sites, and as a nitrogen dopant to improve nitrogen contents. PVP changes the properties of the spinning solution, adjusts the fiber morphology, and to increase the exposed area of active sites as a pore former. The obtained Fe-N-C ORR catalyst delivered a half-wave potential (E1/2) of 0.924 V in a 0.1 M KOH solution and 0.77 V in a 0.1 M HClO4solution. A homemade zinc air battery with power density of 236 mW cm-2demonstrated the excellent performance of the catalyst under working conditions.

2.
ACS Appl Mater Interfaces ; 13(30): 35856-35864, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34292710

ABSTRACT

The electrochemical production of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (ORR) can realize the customer-oriented onsite synthesis of H2O2 in a green and sustainable method. The ongoing challenge that needs to be solved is the fabrication of robust electrocatalysts of excellent performance. In this work, C60 was selected as a precursor due to its uniform structure and abundant pentagon rings. Thanks to the strong interaction between C60 and thiophene, after heteromolecule assembly in the liquid reaction and subsequent reconstruction of the carbon topological structure in solid calcination, C60 was successfully transformed into polyhedral carbon micro-nano shells (PCMNS) with an effective pore structure for the first time, which exhibited excellent capacity for production of H2O2 via two-electron ORR, especially in neutral media. In addition to the high onset potential (0.49 V vs reversible hydrogen electrode (RHE)) and low Tafel slope (72 mV dec-1), its selectivity reached >90% within the potential range of 0.30-0.45 V and maintained >80% after constant potential electrolysis for 10 h. The yield rate of H2O2 was 1102.5 mmol gcat-1 h-1, determined by an H-type electrolytic cell, which was one of the highest values of metal-free carbon-based ORR electrocatalysts ever reported. Such excellent two-electron ORR performance of PCMNS was attributed to its abundant accessible active sites and hierarchical pore structures.

3.
Nanoscale ; 12(19): 10656-10663, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32374301

ABSTRACT

In order to promote the commercial application of proton exchange membrane fuel cells, it is of great importance to develop Pt-based electrocatalysts with high activity and stability for the oxygen reduction reaction (ORR). Here, urchin-like mesoporous TiO2 hollow spheres (UMTHS) with a high specific surface area (167.1 m2 g-1) and improved conductivity were designed and applied as supports to disperse Pt nanoparticles (NPs) for the first time. Uniform Pt NPs (∼3.2 nm) on the surface of nanothorns were obtained after heat treatment. The as-prepared product (Pt/UMTHS) exhibited a more positive half-wave potential (Eh) than that of the reference sample Pt@C without UMTHS (0.867 V vs. 0.829 V). The improved performance can be ascribed to the high specific surface area of UMTHS. The Pt/UMTHS also exhibited a much better ORR stability than the commercial Pt/C after long-term cycling at 0.6-1.0 V according to the comparison of Eh, mass activity and electrochemical surface area with Pt/C. The enhanced stability of Pt/UMTHS was mainly derived from the strong metal support interaction between Pt NPs and UMTHS, together with the spatial restriction and the anti-restriction provided by UMTHS.

SELECTION OF CITATIONS
SEARCH DETAIL
...