Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 982
Filter
1.
J Ethnopharmacol ; : 118400, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823657

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, and this is largely attributed to the limitations of available therapeutic strategies. The traditional Chinese medicine Qizhu Anticancer Prescription (QZACP) can improve the quality of life and prolong the survival time of patients with HCC. However, the precise mechanisms underlying the anti-cancer properties of QZACP remain unclear. PURPOSE: This study examined the anti-hepatocarcinogenic properties of QZACP, with a specific focus on its influence on p21-activated secretory phenotype (PASP)-mediated immune surveillance, to elucidate the underlying molecular pathways involved in HCC. MATERIALS AND METHODS: Cell proliferation was measured using the Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, and clonogenic assays. The cell cycle was evaluated using flow cytometry, and senescence was identified by staining with senescence-associated beta-galactosidase (SA-ß-gal). A primary liver cancer model produced by diethylnitrosamine was established in C57B/L6 mice to assess the tumor-inhibitory effect of QZACP. The liver's pathological characteristics were examined using hematoxylin and eosin staining. PASP screening was performed using GeneCards, DisGeNet, Online Mendelian Inheritance in Man, and The Cancer Genome Atlas databases. Western blot analysis, enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and Transwell migration assays were performed. RESULTS: QZACP-containing serum enhanced p21 expression, triggered cell cycle arrest, accelerated cell senescence, and suppressed cell proliferation in Huh7 and MHCC-97H liver cancer cells. QZACP reduced the quantity and dimensions of liver tumor nodules and enhanced p21 protein expression, SA-ß-Gal staining in tumor lesions, and cytotoxic CD8+ T cell infiltration. Bioinformatic analyses showed that PASP factors, including hepatocyte growth factor, decorin (DCN), dermatopontin, C-X-C motif chemokine ligand 14 (CXCL14), and Wnt family member 2 (WNT2), play an important role in the development of HCC. In addition, these factors are associated with the presence of natural killer cells and CD8+ T cells within tumors. Western blotting and ELISA confirmed that QZACP increased DCN, CXCL14, and WNT2 levels in tumor tissues and peripheral blood. CONCLUSIONS: QZACP suppression of HCC progression may involve cell senescence mediated by P21 upregulation, DCN, CXCL14, and WNT2 secretion, and reversal of the immunosuppressive microenvironment. This study provides insights that can be used in the development of new treatment strategies for HCC.

2.
Neuroreport ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829952

ABSTRACT

Thyroid-associated ophthalmopathy (TAO) is a significant autoimmune eye disease known for causing exophthalmos and substantial optic nerve damage. Prior investigations have solely focused on static functional MRI (fMRI) scans of the brain in TAO patients, neglecting the assessment of temporal variations in local brain activity. This study aimed to characterize alterations in dynamic regional homogeneity (dReHo) in TAO patients and differentiate between TAO patients and healthy controls using support vector machine (SVM) classification. Thirty-two patients with TAO and 32 healthy controls underwent resting-state fMRI scans. We calculated dReHo using sliding-window methods to evaluate changes in regional brain activity and compared these findings between the two groups. Subsequently, we employed SVM, a machine learning algorithm, to investigate the potential use of dReHo maps as diagnostic markers for TAO. Compared to healthy controls, individuals with active TAO demonstrated significantly higher dReHo values in the right angular gyrus, left precuneus, right inferior parietal as well as the left superior parietal gyrus. The SVM model demonstrated an accuracy ranging from 65.62 to 68.75% in distinguishing between TAO patients and healthy controls based on dReHo variability in these identified brain regions, with an area under the curve of 0.70 to 0.76. TAO patients showed increased dReHo in default mode network-related brain regions. The accuracy of classifying TAO patients and healthy controls based on dReHo was notably high. These results offer new insights for investigating the pathogenesis and clinical diagnostic classification of individuals with TAO.

3.
Travel Med Infect Dis ; 60: 102724, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692338

ABSTRACT

BACKGROUND: Japanese encephalitis (JE) is a serious health concern in China, with approximately 80 % of global infections occurring in China. To develop effective prevention and control strategies, this study explored the epidemiological characteristics of JE in China based on spatiotemporal data, to understand the patterns and trends of JE incidence in different regions and time periods. METHOD: The incidence and mortality rates of JE were extracted from the Public Health Data Center, the official website of the National Health Commission of the People's Republic of China, and the National Notifiable Infectious Disease Surveillance System from 2004 to 2019. Joinpoint regression was applied to examine the spatiotemporal patterns and annual percentage change in incidence and mortality of the JE. RESULTS: From 2004 to 2019, a total of 43,569 cases of JE were diagnosed, including 2081 deaths. The annual incidence rate of JE decreased from 0.4171/100,000 in 2004 to 0.0298/100,000 in 2019, with an annual percentage change (APC) of -13.5 % (P < 0.001). The annual mortality rate of JE showed three stages of change, with inflection points in 2006 and 2014. The incidence and mortality rates of JE have declined in all provinces of China, and more cases were reported in 0-14 years of age, accounting for nearly 80 % of all patients. CONCLUSIONS: The morbidity and mortality rates of JE in China are generally on a downward trend, and emphasis should be placed on strengthening disease surveillance in special areas and populations, popularizing vaccination, and increasing publicity.

4.
PLoS One ; 19(5): e0301891, 2024.
Article in English | MEDLINE | ID: mdl-38709731

ABSTRACT

In the context of the continued advancement of the green economy transition, the proactive pursuit of carbon emissions reduction and the early attainment of carbon neutrality goals have emerged as essential components in promoting high-quality economic development. Not only does it contribute to the creation of a community of human destiny, but it is also vital to the realization of sustainable development for human civilization. A dynamic evolutionary game model, which encompasses the interactions among government, enterprises, and the public, was constructed to examine the inherent impact mechanisms of the behavior of three players on the development of a green economy under the context of energy saving and emission reduction subsidies. The results showed that the incentive and punishment mechanisms served as effective tools for harmonizing the interests of system members. Within the mechanisms, the public demonstrated a higher sensitivity to rewards, while enterprises exhibited greater responsiveness to fines. Consequently, the government could influence the behavior of enterprises by incentivizing the public to serve as a third-party inquiry and oversight body. Simultaneously, the government could encourage enterprises to expedite green technology innovation by employing a combination of incentive and punishment mechanisms.


Subject(s)
Industry , China , Humans , Conservation of Energy Resources , Sustainable Development , Economic Development , Environmental Policy
5.
Langmuir ; 40(21): 11196-11205, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38741372

ABSTRACT

Despite hybrid rocket motors offering distinct advantages over solid or liquid rocket motors, their low regression rate and insufficient combustion efficiency remain significantly unimproved. This study focuses on the effects of the helix lead on the regression rate distribution and combustion efficiency of vat-polymerized fuel grains with a spiral star port for a hybrid rocket. Both experimental and numerical investigations were conducted to study the combustion characteristics and regression rate distribution of three-dimensional (3D) print grains. Spiral star grains with varying helix leads of 60, 90, and 120 mm were fabricated using light-curing 3D printing technology. A 3D simulation model was developed to obtain the temperature distribution, species mass distribution, and combustion efficiency. Furthermore, firing tests were performed on a two-dimensional radial hybrid combustion test stand to measure the regression rate. Digital image processing of computed tomography images was used to determine the regression rate. Simulation results indicated that the spiral star grain port helps to improve the combustion efficiency compared with those seen with round tube and straight star port grains. With an increase in the axial distance, the flame zone gradually shrinks, and the smaller the helix lead, the faster the shrinkage. At a mass flow rate of 1.50 g/s for oxygen, the regression rate of the spiral star grains is significantly higher than that of the straight star grain and the conventional round tubular grains, and the regression rate gradually increases with a decrease in the helix lead. This finding is expected to solve the problem of the low regression rate of solid fuels with spiral star pore-shaped grains prepared by the light-curing 3D printing method.

6.
J Matern Fetal Neonatal Med ; 37(1): 2344089, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38710614

ABSTRACT

OBJECTIVES: To explore the prenatal clinical utility of chromosome microarray analysis (CMA) for polyhydramnios and evaluate the short and long-term prognosis of fetuses with polyhydramnios. METHODS: A total of 600 singleton pregnancies with persistent polyhydramnios from 2014 to 2020 were retrospectively enrolled in this study. All cases received amniocentesis and were subjected to CMA results. All cases were categorized into two groups: isolated polyhydramnios and non-isolated polyhydramnios [with soft marker(s) or with sonographic structural anomalies]. All fetuses were followed up from 6 months to five years after amniocentesis to acquire short and long-term prognosis. RESULTS: The detection rates of either aneuploidy or pathogenic copy number variants in fetuses with non-isolated polyhydramnios were significantly higher than those with isolated polyhydramnios (5.0 vs. 1.5%, p = 0.0243; 3.6 vs. 0.8%, p = 0.0288). The detection rate of total chromosomal abnormalities in the structural abnormality group was significantly higher than that in the isolated group (10.0 vs. 2.3%, p = 0.0003). In the CMA-negative cases, the incidence of termination of pregnancy, neonatal and childhood death, and non-neurodevelopmental disorders in fetuses combined with structural anomalies was significantly higher than that in fetuses with isolated polyhydramnios (p < 0.05). We did not observe any difference in the prognosis between the isolated group and the combined group of ultrasound soft markers. In addition, the risk of postnatal neurodevelopmental disorders was also consistent among the three groups (1.6 vs. 1.3 vs. 1.8%). CONCLUSION: For low-risk pregnancies, invasive prenatal diagnosis of isolated polyhydramnios might be unnecessary. CMA should be considered for fetuses with structural anomalies. In CMA-negative cases, the prognosis of fetuses with isolated polyhydramnios was good, and polyhydramnios itself did not increase the risk of postnatal neurological development disorders. The worse prognosis mainly depends on the combination of polyhydramnios with structural abnormalities.


Subject(s)
Chromosome Aberrations , Microarray Analysis , Polyhydramnios , Pregnancy Outcome , Humans , Female , Pregnancy , Polyhydramnios/genetics , Polyhydramnios/diagnosis , Polyhydramnios/epidemiology , Adult , Retrospective Studies , Chromosome Aberrations/statistics & numerical data , Pregnancy Outcome/epidemiology , Prenatal Diagnosis/methods , Prognosis , Amniocentesis/statistics & numerical data , Ultrasonography, Prenatal
7.
Polymers (Basel) ; 16(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732746

ABSTRACT

The rapid development of 3D printing technology and the emerging applications of shape memory elastomer have greatly stimulated the research of photocurable polymers. In this work, glycerol (Gly) was polycondensed with sebacic, dodecanedioic, or tetradecanedioic acids to provide precursor polyesters with hydroxyl or carboxyl terminal groups, which were further chemically functionalized by acryloyl chloride to introduce sufficient, photocurable, and unsaturated double bonds. The chemical structures of the acrylated polyesters were characterized by FT IR and NMR spectroscopies. The photoinitiated crosslinking behavior of the acrylated polyesters under ultraviolet irradiation without the addition of any photoinitiator was investigated. The results showed that the precursor polyesters that had a greater number of terminated hydroxyls and a less branched structure obtained a relatively high acetylation degree. A longer chain of aliphatic dicarboxylic acids (ADCAs) and higher ADCA proportion lead to a relatively lower photopolymerization rate of acrylated polyesters. However, the photocured elastomers with a higher ADCA proportion or longer-chain ADCAs resulted in better mechanical properties and a lower degradation rate. The glass transition temperature (Tg) of the elastomer increased with the alkyl chain length of the ADCAs, and a higher Gly proportion resulted in a lower Tg of the elastomer due to its higher crosslinking density. Thermal gravimetric analysis (TGA) showed that the chain length of the ADCAs and the molar ratio of Gly to ADCAs had less of an effect on the thermal stability of the elastomer. As the physicochemical properties can be adjusted by choosing the alkyl chain length of the ADCAs, as well as changing the ratio of Gly:ADCA, the photocurable polyesters are expected to be applied in multiple fields.

8.
J Trace Elem Med Biol ; 84: 127465, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713994

ABSTRACT

BACKGROUND AND AIMS: Manganese (Mn), a vital element in energy metabolism, is predominantly stored in skeletal muscles and plays a crucial role in muscle function and strength. Patients on maintenance hemodialysis (MHD) often experience muscle wasting due to metabolic disruption and inflammation. This study aimed to explore the relationship between blood Mn levels and sarcopenia in a patient population. METHODS: In this multicenter cross-sectional study, conducted from March 2021 to March 2022, 386 patients on MHD from three medical centers were included. Blood Mn levels were measured using inductively coupled plasma mass spectrometry, and body composition was assessed post-dialysis using bioelectrical impedance analysis. Grip strength was measured using a digital dynamometer. The patients were categorized into groups with and without sarcopenia. Using a generalized additive model to fit a smooth curve, we employed a generalized linear model to identify the optimal inflection point and explore the threshold effect after discovering a segmented relationship. Subsequently, a binary logistic regression analysis was conducted to investigate the relationship between blood manganese levels and the risk of sarcopenia, with adjustments made for potential confounding factors. RESULTS: A negative correlation was observed between blood Mn levels and sarcopenia-related parameters (Appendicular Skeletal Muscle Mass Index and grip strength) in Spearman's correlation analysis (both P < 0.05). After adjusting for confounding factors, a nonlinear association was identified. When blood Mn was ≤ 10.6 µg/L, the increase in sarcopenia was not statistically significant (P > 0.05). Conversely, when blood Mn exceeded 10.6 µg/L, each 1 µg/L increase raised the risk of sarcopenia by 0.1 times. Considering confounders, multivariate binary logistic regression confirmed an independent association between elevated blood Mn levels and sarcopenia. CONCLUSION: This study revealed an independent association between elevated blood Mn levels (> 10.6 µg/L) and sarcopenia in patients undergoing MHD. These findings emphasize the importance of understanding the Mn metabolism in the context of muscle health in this patient population. Further research is warranted to explore the underlying mechanisms and potential interventions for mitigating sarcopenia in patients with elevated blood Mn levels undergoing MHD.


Subject(s)
Manganese , Renal Dialysis , Sarcopenia , Humans , Sarcopenia/blood , Sarcopenia/etiology , Cross-Sectional Studies , Male , Female , Manganese/blood , Middle Aged , Renal Dialysis/adverse effects , Aged
9.
Article in English | MEDLINE | ID: mdl-38770822

ABSTRACT

AIMS: Cisplatin (CDDP) is a commonly used chemotherapeutic agent for treating head and neck tumors. However, there is high incidence of ototoxicity in patients treated with CDDP, which may be caused by the excessive reactive oxygen species generation (ROS) in the inner ear. Many studies have demonstrated the strong antioxidant effects of ergothioneine (EGT). Therefore, we assumed that EGT could also attenuate CIHL as well. However, the protective effect and mechanism of EGT on CIHL have not been elucidated as so far. In this study, we investigated whether EGT could treat CIHL and the mechanism. RESULTS: In our study, we confirmed the protective effect of EGT on preventing cisplatin induced toxicity both in vitro and in vivo. The auditory brainstem response (ABR) threshold shift in the EGT + CDDP treatment mice was 30 dB less than that in the CDDP treatment mice. EGT suppressed production of ROS and pro-apoptotic proteins both in tissue and cells. By silencing Nrf2, we confirmed that EGT protected against CIHL via the Nrf2 pathway. We also found that SLC22A4 (OCTN1), an important molecule involved in transporting EGT, was expressed in the cochlea. INNOVATION: Our results revealed the role of EGT in the prevention of CIHL by activating Nrf2/HO-1/NQO-1 pathway, and broadened a new perspective therapeutic target of EGT. CONCLUSION: EGT decreased ROS production and promoted the expression of antioxidative enzymes to maintain redox homeostasis in sensory hair cells (HCs). Overall, our results indicated that EGT may serve as a novel treatment drug to attenuate CIHL.

10.
J Cell Mol Med ; 28(10): e18395, 2024 May.
Article in English | MEDLINE | ID: mdl-38774995

ABSTRACT

Tumour-associated macrophages (TAMs), encompassing M1 and M2 subtypes, exert significant effects on osteosarcoma (OS) progression and immunosuppression. However, the impacts of TAM-derived biomarkers on the progression of OS remains limited. The GSE162454 profile was subjected to single-cell RNA (scRNA) sequencing analysis to identify crucial mediators between TAMs and OS cells. The clinical features, effects and mechanisms of these mediators on OS cells and tumour microenvironment were evaluated via biological function experiments and molecular biology experiments. Phosphodiesterase 4C (PDE4C) was identified as a pivotal mediator in the communication between M2 macrophages and OS cells. Elevated levels of PDE4C were detected in OS tissues, concomitant with M2 macrophage level, unfavourable prognosis and metastasis. The expression of PDE4C was observed to increase during the conversion process of THP-1 cells to M2 macrophages, which transferred the PDE4C mRNA to OS cells through exosome approach. PDE4C increased OS cell proliferation and mobility via upregulating the expression of collagens. Furthermore, a positive correlation was observed between elevated levels of PDE4C and increased TIDE score, decreased response rate following immune checkpoint therapy, reduced TMB and diminished PDL1 expression. Collectively, PDE4C derived from M2 macrophages has the potential to enhance the proliferation and mobility of OS cells by augmenting collagen expression. PDE4C may serve as a valuable biomarker for prognosticating patient outcomes and response rates following immunotherapy.


Subject(s)
Bone Neoplasms , Cyclic Nucleotide Phosphodiesterases, Type 4 , Immunotherapy , Macrophages , Osteosarcoma , Tumor Microenvironment , Osteosarcoma/pathology , Osteosarcoma/immunology , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/therapy , Humans , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Prognosis , Immunotherapy/methods , Tumor Microenvironment/immunology , Bone Neoplasms/immunology , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Macrophages/metabolism , Macrophages/immunology , Cell Line, Tumor , Cell Proliferation , Male , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Female , Neoplasm Metastasis , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Cell Movement
11.
J Agric Food Chem ; 72(20): 11452-11464, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38736181

ABSTRACT

In this work, a new rapid and targeted method for screening α-glucosidase inhibitors from Hypericum beanii was developed and verified. Ten new polycyclic polyprenylated acylphloroglucinols (PPAPs), hyperlagarol A-J (1-10), and nine known PPAPs (11-19) were obtained from H. beanii. Their structures were identified by using comprehensive analyses involving mass spectrometry, ultraviolet spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and electron capture dissociation calculations. 1 and 2 are two new rare 2,3-seco-spirocyclic PPAPs, 3 and 4 are two novel 12,13-seco-spirocyclic PPAPs, 5 and 6 are two novel spirocyclic PPAPs, 7 and 8 are two new unusual spirocyclic PPAPs with complex bridged ring systems, and 9 and 10 are two novel nonspirocyclic PPAPs. α-GC inhibitory activities of all isolated compounds were tested. Most of them displayed inhibitory activities against α-glucosidase, with the IC50 values ranging from 6.85 ± 0.65 to 112.5 ± 9.03 µM. Moreover, the inhibitory type and mechanism of the active compounds were further analyzed using kinetic studies and molecular docking.


Subject(s)
Glycoside Hydrolase Inhibitors , Hypericum , Molecular Docking Simulation , Plant Extracts , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Hypericum/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Molecular Structure , Ligands , Structure-Activity Relationship , Kinetics
12.
Heart Vessels ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806839

ABSTRACT

Hypertrophic cardiomyopathy (HCM) patients with sarcomere mutations have an increased risk of heart failure and left ventricular (LV) systolic dysfunction. We hypothesize that sarcomere mutation carriers have abnormal myocardial contractility before LV dysfunction. Therefore, we aimed to associate myocardial contractility with identified sarcomere mutations and predict genotyped HCM patients with sarcomere mutation by three-dimensional speckle tracking imaging (3D-STI). A retrospective analysis of 117 HCM patients identified 32 genotype-positive (G +) and 85 genotype-negative (G-) patients. Genotype-positive patients had higher globe circumferential strain (GCS), globe longitudinal strain (GLS), and globe radial strain (GRS) (p < 0.05), and multivariate logistic regression revealed that these variables were associated with a positive genetic status (p < 0.05). After the propensity matches other possible influencing factors, we developed three models, named Model GCS, Model GLS, and Model GRS, which could identified genotype-positive HCM patients with excellent performance (AUC of 0.855, 0.833, and 0.870 respectively, all p < 0.001). Genotype-positive HCM patients show a higher myocardial hyper-contractility status than patients without sarcomere mutations. When combined with clinical and echocardiographic markers, the 3D-STI parameters can effectively identify the likelihood of genotype-positive HCM.

13.
Cell Immunol ; 401-402: 104837, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38810592

ABSTRACT

The activation of macrophages, essential for the innate defense against invading pathogens, revolves around Toll-like receptors (TLRs). Nevertheless, a comprehensive understanding of the molecular mechanisms governing TLR signaling in the course of macrophage activation remains to be fully clarified. Although Zc3h12c was originally identified as being enriched in organs associated with macrophages, its precise function remains elusive. In this study, we observed a significant induction of Zc3h12c in macrophages following stimulation with TLR agonists and pathogens. Overexpression of Zc3h12c significantly mitigated the release of TNF-α and IL-6 triggered by lipopolysaccharide (LPS), whereas depletion of Zc3h12c increased the production of the cytokines mentioned above. Notably, the expression of IFN-ß was not influenced by Zc3h12c. Luciferase reporter assays revealed that Zc3h12c could suppress the TNF-α promoter activity. Moreover, Zc3h12c exerted a notable inhibitory effect on JNK, ERK, p38, and NF-κB signaling induced by LPS. In summary, the findings of our study suggest that Zc3h12c functions as a robust suppressor of innate immunity, potentially playing a role in the pathogenesis of infectious diseases.

14.
Front Endocrinol (Lausanne) ; 15: 1354614, 2024.
Article in English | MEDLINE | ID: mdl-38800470

ABSTRACT

Background: The coexistence of heart failure and diabetes is prevalent, particularly in Intensive Care Units (ICU). However, the relationship between the triglyceride-glucose (TyG) index, heart failure, diabetes, and the length of hospital stay (LHS) in patients with cerebrovascular disease in the ICU remains uncertain. This study aims to investigate the association between the TyG index and LHS in patients with heart failure and diabetes. Methods: This retrospective study utilized the Medical Information Mart for Intensive Care (MIMIC)-IV database to analyze patients with diabetes and heart failure. Participants were categorized into quartiles based on the TyG index, and the primary outcome was LHS. The association between the TyG index at ICU admission and LHS was examined through multivariable logistic regression models, restricted cubic spline regression, and subgroup analysis. Results: The study included 635 patients with concurrent diabetes and heart failure. The fully adjusted model demonstrated a positive association between the TyG index and LHS. As a tertile variable (Q2 and Q3 vs Q1), the beta (ß) values were 0.88 and 2.04, with a 95% confidence interval (95%CI) of -0.68 to 2.44 and 0.33 to 3.74, respectively. As a continuous variable, per 1 unit increment, the ß (95% CI) was 1.13 (0.18 to 2.08). The TyG index's relationship with LHS showed linearity (non-linear p = 0.751). Stratified analyses further confirmed the robustness of this correlation. Conclusion: The TyG index exhibited a linearly positive association with the LHS in patients with both heart failure and diabetes. Nevertheless, prospective, randomized, controlled studies are imperative to substantiate and validate the findings presented in this investigation.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Heart Failure , Intensive Care Units , Length of Stay , Triglycerides , Humans , Heart Failure/blood , Heart Failure/epidemiology , Female , Male , Retrospective Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Intensive Care Units/statistics & numerical data , Triglycerides/blood , Aged , Length of Stay/statistics & numerical data , Blood Glucose/analysis , Blood Glucose/metabolism , Middle Aged , Aged, 80 and over
15.
J Cell Mol Med ; 28(10): e18445, 2024 May.
Article in English | MEDLINE | ID: mdl-38801403

ABSTRACT

Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS), a prevalent urological ailment, exerts a profound influence upon the well-being of the males. Autoimmunity driven by Th17 cells has been postulated as a potential factor in CP/CPPS pathogenesis. Nonetheless, elucidating the precise mechanisms governing Th17 cell recruitment to the prostate, triggering inflammation, remained an urgent inquiry. This study illuminated that CCL20 played a pivotal role in attracting Th17 cells to the prostate, thereby contributing to prostatitis development. Furthermore, it identified prostate stromal cells and immune cells as likely sources of CCL20. Additionally, this research unveiled that IL-17A, released by Th17 cells, could stimulate macrophages to produce CCL20 through the NF-κB/MAPK/PI3K pathway. The interplay between IL-17A and CCL20 establishes a positive feedback loop, which might serve as a critical mechanism underpinning the development of chronic prostatitis, thus adding complexity to its treatment challenges.


Subject(s)
Autoimmune Diseases , Chemokine CCL20 , Chemotaxis , Interleukin-17 , Prostatitis , Th17 Cells , Male , Prostatitis/immunology , Prostatitis/pathology , Prostatitis/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Chemokine CCL20/metabolism , Chemokine CCL20/genetics , Animals , Interleukin-17/metabolism , Interleukin-17/immunology , Mice , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Macrophages/metabolism , Macrophages/immunology , Disease Models, Animal , NF-kappa B/metabolism , Signal Transduction , Humans , Mice, Inbred C57BL , Prostate/pathology , Prostate/metabolism , Prostate/immunology , Phosphatidylinositol 3-Kinases/metabolism , Autoimmunity
16.
Chem Commun (Camb) ; 60(33): 4475-4478, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38563956

ABSTRACT

A hydrogen-bonded organic framework (HOF) consisting of a 9,10-diphenylanthracene carboxylic derivative, DPACOOH, was developed for solid state triplet-triplet annihilation upconversion (TTA-UC). The HOF sample shows a 70% increase in upconversion quantum yield and a lower threshold value of 126.0 mW cm-2 compared to those of the disordered powder sample, due to a 43% longer triplet diffusion length in HOF than that in the powder sample.

17.
Heliyon ; 10(7): e28093, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560222

ABSTRACT

Cancer stem cells (CSCs) are considered key contributors to tumor progression, and ferroptosis has been identified as a potential target for CSCs. We have previously shown that butyrate enhances the ferroptosis induced by erastin in lung cancer cell, this study aimed to investigate the impact of butyrate on the progression of lung CSCs. To investigate these effects, we constructed a series of in vitro experiments, including 3D non-adherent sphere-formation, cytometry analysis, assessment of CSC marker expression, cell migration assay, and in vivo tumorigenesis analyses. Additionally, the influence of butyrate on chemotherapeutic sensitivity were determined through both in vitro and in vivo experiments. Mechanistically, immunofluorescence analysis was employed to examine the localization of biotin-conjugated butyrate. We identified that butyrate predominantly localized in the lysosome and concurrently recruited Fe2+ in lysosome. Moreover, butyrate reduced the stability of SLC7A11 protein stability in lung cancer cells through ubiquitination and proteasome degradation. Importantly, the effects of butyrate on lung CSCs were found to be dependent on lysosome Fe2+- and SLC7A11-mediated ferroptosis. In summary, our results demonstrate that butyrate could induce the ferroptosis in lung CSCs by recruiting Fe2+ in lysosome and promoting the ubiquitination-lysosome degradation of SLC7A11 protein.

18.
J Biomater Sci Polym Ed ; : 1-12, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38574263

ABSTRACT

Infected bone defect (IBD) is a great challenge in orthopedics, which involves in bone loss and infection. Here, a self-assembling hydrogel scaffold (named AMP-RAD/EXO), integrating antimicrobial peptides(AMPs), RADA16 and BMSCs exosomes with an innovative strategy, is developed and applied in IBD treatment for sustained antimicrobial ability, accelerating osteoblasts proliferation and promoting bone regeneration. AMPs present an excellent ability to inhibit infection, RADA16 is a self-assembling peptide hydrogel for AMPs delivery, and BMSCs exosomes can promote the bone regeneration. The prepared AMP-RAD/EXO exhibited a polyporous 3D structure for imbibition of BMSCs exosomes and migration of osteoblasts. In vitro studies indicate AMP-RAD/EXO can inhibit the growth of Staphylococcus aureus, accelerate the proliferation and migration of BMSCs. More importantly, in vivo results also prove that AMP-RAD/EXO exhibit an excellent effect on IBD treatment. Thus, the prepared AMP-RAD/EXO provides a multifunctional scaffold concept for bone tissue engineering technology.

19.
Redox Rep ; 29(1): 2332038, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38563333

ABSTRACT

OBJECTIVES: Gentamicin is one of the most common ototoxic drugs that can lower patients' quality of life. Oxidative stress is a key factors inducing sensory hair cell death during gentamicin administration. So far, there are no effective drugs to prevent or treat gentamicin- induced hearing loss. A recent study found cystic fibrosis transmembrane conductance regulator (CFTR) as a new target to modulate cellular oxidative balance. The objective of this study was to estimate the effect of the CFTR activator ivacaftor on gentamicin-induced ototoxicity and determine its mechanism. METHODS: The hair cell count was analyzed by Myosin 7a staining. Apoptosis was analyzed by TUNEL Apoptosis Kit. Cellular reactive oxygen species (ROS) level was detected by DCFH-DA probes. The Nrf2 related proteins expression levels were analyzed by western blot. RESULTS: An in vitro cochlear explant model showed that gentamicin caused ROS accumulation in sensory hair cells and induced apoptosis, and this effect was alleviated by pretreatment with ivacaftor. Western blotting showed that ivacaftor administration markedly increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO1), and NAD(P)H:quinone oxidoreductase 1 (NQO1). The protective effect of ivacaftor was abolished by the Nrf2 inhibitor ML385. DISCUSSION: Our results indicate the protective role of the CFTR-Nrf2-HO1/NQO1 pathway in gentamicin-induced ototoxicity. Ivacaftor may be repositioned or repurposed towards aminoglycosides-induced hearing loss.


Subject(s)
Aminophenols , Hearing Loss , Ototoxicity , Quinolones , Humans , Gentamicins/toxicity , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/pharmacology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/pharmacology , Quality of Life , Oxidative Stress , Apoptosis , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/pharmacology
20.
Redox Rep ; 29(1): 2341470, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38629504

ABSTRACT

Cisplatin is widely employed in clinical oncology as an anticancer chemotherapy drug in clinical practice and is known for its severe ototoxic side effects. Prior research indicates that the accumulation of reactive oxygen species (ROS) plays a pivotal role in cisplatin's inner ear toxicity. Hesperidin is a flavanone glycoside extracted from citrus fruits that has anti-inflammatory and antioxidant effects. Nonetheless, the specific pharmacological actions of hesperidin in alleviating cisplatin-induced ototoxicity remain elusive. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical mediator of the cellular oxidative stress response, is influenced by hesperidin. Activation of Nrf2 was shown to have a protective effect against cisplatin-induced ototoxicity. The potential of hesperidin to stimulate Nrf2 in attenuating cisplatin's adverse effects on the inner ear warrants further investigation. This study employs both in vivo and in vitro models of cisplatin ototoxicity to explore this possibility. Our results reveal that hesperidin mitigates cisplatin-induced ototoxicity by activating the Nrf2/NQO1 pathway in sensory hair cells, thereby reducing ROS accumulation, preventing hair cell apoptosis, and alleviating hearing loss.


Subject(s)
Antineoplastic Agents , Hesperidin , Ototoxicity , Humans , Cisplatin/toxicity , Hesperidin/pharmacology , NF-E2-Related Factor 2/metabolism , Ototoxicity/drug therapy , Ototoxicity/metabolism , Reactive Oxygen Species/metabolism , Cell Line , Antineoplastic Agents/toxicity , Hair Cells, Auditory/metabolism , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...