Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 49: 116438, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34610571

ABSTRACT

Liver fibrosis is one of the most common pathological consequences of chronic liver diseases (CLD). To develop effective antifibrotic strategies, a novel class of 1-(substituted phenyl)-1,8-naphthalidine-3-carboxamide derivatives were designed and synthesized. By means of the collagen type I α 1 (COL1A1)-based screening and cytotoxicity assay in human hepatic stellate cell (HSC) line LX-2, seven compounds were screened out from total 60 derivatives with high inhibitory effect and relatively low cytotoxicity for further COL1A1 mRNA expression analysis. It was found that compound 17f and 19g dose-dependently inhibited the expression of fibrogenic markers, including α-smooth muscle actin (α-SMA), matrix metalloprotein 2 (MMP-2), connective tissue growth factor (CTGF) and transforming growth factor ß1 (TGFß1) on both mRNA and protein levels. Further mechanism studies indicated that they might suppress the hepatic fibrogenesis via inhibiting both PI3K/AKT/Smad and non-Smad JAK2/STAT3 signaling pathways. Furthermore, 19g administration attenuated hepatic histopathological injury and collagen accumulation, and reduced fibrogenesis-associated protein expression in liver tissues of bile duct ligation (BDL) rats, showing significant antifibrotic effect in vivo. These findings identified 1,8-naphthalidine derivatives as potent anti-hepatic fibrosis agents, and provided valuable information for further structure optimization.


Subject(s)
1-Naphthylamine/pharmacology , Drug Discovery , Liver Cirrhosis/drug therapy , 1-Naphthylamine/chemical synthesis , 1-Naphthylamine/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Molecular Structure , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Smad Proteins/antagonists & inhibitors , Smad Proteins/metabolism , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 41: 127980, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33766773

ABSTRACT

Infections caused by antibiotic resistant bacteria are a major health concern throughout the world. It is well known that PFK-158 can enhance the antibacterial effect of polymyxin, but its own anti-bactericidal effect is rarely discussed. In order to investigate the anti-bactericidal effect of PFK-158 and its derivatives, PFK-158 and 35 derivatives were designed, synthesized, and evaluated for their antibacterial activities. Compounds A1, A3, A14, A15 and B6 exhibited potent antibacterial effect against both clinical drug sensitive and resistant Gram-positive bacteria, and they are 2-8 folds more potent than levofloxacin against Methicillin-resistant staphylococcus epidermidis (MRSE). A significant synergistic effect of these compounds and polymyxin against drug-resistant Gram-negative bacteria, which is similar to PFK-158 was also observed. The result can provided a new and broader prospect for the development of new medicine against drug-resistant bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enterococcus/drug effects , Methicillin Resistance/drug effects , Pyridines/pharmacology , Quinolines/pharmacology , Staphylococcus aureus/drug effects , Vancomycin Resistance/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Drug Design , Microbial Sensitivity Tests , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...